Answer

Verified

451.2k+ views

Hint- For solving such problems, try to convert the term in simpler form by the help of trigonometric identities ( sin 2x =2 sin x cos x ) and use substitution method and partial fraction.

To solve the given integral, first solving the denominator

\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]

Now let’s put the fraction together and proceeding further:

\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]

Now we can integrate the above term:

\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]

Let us consider

\[

u = \cos x \\

du = - \sin xdx \\

{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\

\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\

\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\

\]

Now let’s take a break from integration and decompose the expression into partial fractions:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]

Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:

\[

- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\

- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\

- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\

\]

And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:

\[

0 = - 2A + 2B - C \\

0 = A + 3B \\

-1 = A + B + C \\

\]

Adding all the three equations, we get:

\[

- 1 = 6B \\

B = \dfrac{{ - 1}}{6} \\

\]

From the second equation, we get:

\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]

From the third equation, we get:

\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]

And so we have:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]

Now we can continue with the integration:

\[

{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\

= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\

\]

Now after substituting back the considered value of $u$ we get:

\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]

Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.

To solve the given integral, first solving the denominator

\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]

Now let’s put the fraction together and proceeding further:

\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]

Now we can integrate the above term:

\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]

Let us consider

\[

u = \cos x \\

du = - \sin xdx \\

{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\

\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\

\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\

\]

Now let’s take a break from integration and decompose the expression into partial fractions:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]

Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:

\[

- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\

- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\

- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\

\]

And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:

\[

0 = - 2A + 2B - C \\

0 = A + 3B \\

-1 = A + B + C \\

\]

Adding all the three equations, we get:

\[

- 1 = 6B \\

B = \dfrac{{ - 1}}{6} \\

\]

From the second equation, we get:

\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]

From the third equation, we get:

\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]

And so we have:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]

Now we can continue with the integration:

\[

{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\

= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\

\]

Now after substituting back the considered value of $u$ we get:

\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]

Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

The 3 + 3 times 3 3 + 3 What is the right answer and class 8 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE