Answer
Verified
495.3k+ views
Hint- For solving such problems, try to convert the term in simpler form by the help of trigonometric identities ( sin 2x =2 sin x cos x ) and use substitution method and partial fraction.
To solve the given integral, first solving the denominator
\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]
Now let’s put the fraction together and proceeding further:
\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]
Now we can integrate the above term:
\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]
Let us consider
\[
u = \cos x \\
du = - \sin xdx \\
{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\
\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\
\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\
\]
Now let’s take a break from integration and decompose the expression into partial fractions:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]
Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:
\[
- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\
- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\
- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\
\]
And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:
\[
0 = - 2A + 2B - C \\
0 = A + 3B \\
-1 = A + B + C \\
\]
Adding all the three equations, we get:
\[
- 1 = 6B \\
B = \dfrac{{ - 1}}{6} \\
\]
From the second equation, we get:
\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]
From the third equation, we get:
\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]
And so we have:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]
Now we can continue with the integration:
\[
{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\
= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\
\]
Now after substituting back the considered value of $u$ we get:
\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]
Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.
To solve the given integral, first solving the denominator
\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]
Now let’s put the fraction together and proceeding further:
\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]
Now we can integrate the above term:
\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]
Let us consider
\[
u = \cos x \\
du = - \sin xdx \\
{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\
\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\
\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\
\]
Now let’s take a break from integration and decompose the expression into partial fractions:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]
Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:
\[
- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\
- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\
- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\
\]
And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:
\[
0 = - 2A + 2B - C \\
0 = A + 3B \\
-1 = A + B + C \\
\]
Adding all the three equations, we get:
\[
- 1 = 6B \\
B = \dfrac{{ - 1}}{6} \\
\]
From the second equation, we get:
\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]
From the third equation, we get:
\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]
And so we have:
\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]
Now we can continue with the integration:
\[
{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\
= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\
\]
Now after substituting back the considered value of $u$ we get:
\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]
Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE