# Solve the following integral:

$\int {\dfrac{{dx}}{{\sin x + \sin 2x}}} $

Last updated date: 29th Mar 2023

•

Total views: 310.2k

•

Views today: 7.86k

Answer

Verified

310.2k+ views

Hint- For solving such problems, try to convert the term in simpler form by the help of trigonometric identities ( sin 2x =2 sin x cos x ) and use substitution method and partial fraction.

To solve the given integral, first solving the denominator

\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]

Now let’s put the fraction together and proceeding further:

\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]

Now we can integrate the above term:

\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]

Let us consider

\[

u = \cos x \\

du = - \sin xdx \\

{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\

\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\

\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\

\]

Now let’s take a break from integration and decompose the expression into partial fractions:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]

Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:

\[

- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\

- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\

- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\

\]

And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:

\[

0 = - 2A + 2B - C \\

0 = A + 3B \\

-1 = A + B + C \\

\]

Adding all the three equations, we get:

\[

- 1 = 6B \\

B = \dfrac{{ - 1}}{6} \\

\]

From the second equation, we get:

\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]

From the third equation, we get:

\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]

And so we have:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]

Now we can continue with the integration:

\[

{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\

= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\

\]

Now after substituting back the considered value of $u$ we get:

\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]

Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.

To solve the given integral, first solving the denominator

\[\sin x + \sin 2x = \sin x + 2\sin x\cos x = \sin x\left[ {1 + 2\cos x} \right]\]

Now let’s put the fraction together and proceeding further:

\[\dfrac{1}{{\sin x + \sin 2x}} = \dfrac{1}{{\sin x\left[ {1 + 2\cos x} \right]}} = \dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}\]

Now we can integrate the above term:

\[\int {\dfrac{{\sin x}}{{{{\sin }^2}x\left[ {1 + 2\cos x} \right]}}dx} \]

Let us consider

\[

u = \cos x \\

du = - \sin xdx \\

{\sin ^2}x = 1 - {\cos ^2}x = 1 - {u^2} \\

\int {\dfrac{1}{{\left( {1 - {u^2}} \right)\left( {1 + 2u} \right)}}} \left( { - du} \right) \\

\int {\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}}} du \\

\]

Now let’s take a break from integration and decompose the expression into partial fractions:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{A}{{\left( {1 + u} \right)}} + \dfrac{B}{{\left( {1 - u} \right)}} + \dfrac{C}{{\left( {1 + 2u} \right)}}\]

Multiplying on both sides \[\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)\]to get rid of denominators. We get:

\[

- 1 = A\left( {1 - u} \right)\left( {1 + 2u} \right) + B\left( {1 + u} \right)\left( {1 + 2u} \right) + C\left( {1 - u} \right)\left( {1 + u} \right) \\

- 1 = A\left( {1 + u - 2{u^2}} \right) + B\left( {1 + 3u + 2{u^2}} \right) + C\left( {1 - {u^2}} \right) \\

- 1 = \left( { - 2A + 2B - C} \right){u^2} + \left( {A + 3B} \right)u + \left( {A + B + C} \right) \\

\]

And now on comparing coefficient from both sides, we have three equations and three variables, so solving further:

\[

0 = - 2A + 2B - C \\

0 = A + 3B \\

-1 = A + B + C \\

\]

Adding all the three equations, we get:

\[

- 1 = 6B \\

B = \dfrac{{ - 1}}{6} \\

\]

From the second equation, we get:

\[A = - 3B = \dfrac{3}{6} = \dfrac{1}{2}\]

From the third equation, we get:

\[C = - 1 - A - B = - 1 - \dfrac{1}{2} + \dfrac{1}{6} = \dfrac{{ - 4}}{3}\]

And so we have:

\[\dfrac{{ - 1}}{{\left( {1 - u} \right)\left( {1 + u} \right)\left( {1 + 2u} \right)}} = \dfrac{1}{{2\left( {1 + u} \right)}} - \dfrac{1}{{6\left( {1 - u} \right)}} - \dfrac{4}{{3\left( {1 + 2u} \right)}}\]

Now we can continue with the integration:

\[

{\text{ = }}\int {\dfrac{1}{{2\left( {1 + u} \right)}}du - \int {\dfrac{1}{{6\left( {1 - u} \right)}}du - \int {\dfrac{4}{{3\left( {1 + 2u} \right)}}du} } } \\

= \dfrac{1}{2}\ln \left| {1 + u} \right| + \dfrac{1}{6}\ln \left| {1 - u} \right| - \dfrac{2}{3}\ln \left| {1 + 2u} \right| + C{\text{ }}\left[ {\because \int {\dfrac{1}{x}dx = \ln x + C} } \right] \\

\]

Now after substituting back the considered value of $u$ we get:

\[{\text{ = }}\dfrac{1}{2}\ln \left| {1 + \cos x} \right| + \dfrac{1}{6}\ln \left| {1 - \cos x} \right| - \dfrac{2}{3}\ln \left| {1 + 2\cos x} \right| + C\]

Note- Integration of some questions as above where direct integration is not possible, solving by the use of partial fraction is very useful. Also sometimes we have to consider some functions like $\sin \& \cos $in terms of some variables, such as $u$ in this case.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?