
Solve the following differential equation
$\dfrac{{dy}}{{dx}} = 1 + x + y + xy$
Answer
609.3k+ views
Hint- We will try to separate both the terms of $x\& y$. In that case it will be easy to integrate separately.
Given equation: $\dfrac{{dy}}{{dx}} = 1 + x + y + xy$
Before solving the differential equation, first let us rearrange the given equation by taking some common terms.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = 1 + x + y + xy \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1\left( {1 + x} \right) + y\left( {1 + x} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {1 + x} \right)\left( {1 + y} \right) \\
\]
Now, let us separate the like terms together on either side of the equation.
\[ \Rightarrow \dfrac{{dy}}{{\left( {1 + y} \right)}} = \left( {1 + x} \right)dx\]
Now, integrating both the sides
\[ \Rightarrow \int {\dfrac{{dy}}{{\left( {1 + y} \right)}}} = \int {\left( {1 + x} \right)dx} \]
As we know that
\[\left[ {\because \int {\dfrac{{dx}}{x} = \ln x} } \right]\& \left[ {\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right]\]
So using the above formula and by solving the integral, we get
\[ \Rightarrow \ln \left( {y + 1} \right) = \dfrac{{{x^2}}}{2} + x + c\]
As we know by the property of natural logarithm
$
\ln x = y \\
\Rightarrow x = {e^y} \\
$
So using this in the above equation, we have
\[
\Rightarrow y + 1 = {e^{\dfrac{{{x^2}}}{2} + x + c}} \\
\Rightarrow y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1 \\
\]
Hence, the solution of the given equation is\[y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1\]
Note- To solve any differential equation, rearranging of the equation in the correct form at the beginning is a very basic step. Re-arrangement should be made in such a way as the terms on L.H.S. and R.H.S. must contain different variables. $\ln $ in the solution represents natural logarithm which means logarithm with base $e$.
Given equation: $\dfrac{{dy}}{{dx}} = 1 + x + y + xy$
Before solving the differential equation, first let us rearrange the given equation by taking some common terms.
\[
\Rightarrow \dfrac{{dy}}{{dx}} = 1 + x + y + xy \\
\Rightarrow \dfrac{{dy}}{{dx}} = 1\left( {1 + x} \right) + y\left( {1 + x} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \left( {1 + x} \right)\left( {1 + y} \right) \\
\]
Now, let us separate the like terms together on either side of the equation.
\[ \Rightarrow \dfrac{{dy}}{{\left( {1 + y} \right)}} = \left( {1 + x} \right)dx\]
Now, integrating both the sides
\[ \Rightarrow \int {\dfrac{{dy}}{{\left( {1 + y} \right)}}} = \int {\left( {1 + x} \right)dx} \]
As we know that
\[\left[ {\because \int {\dfrac{{dx}}{x} = \ln x} } \right]\& \left[ {\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} } \right]\]
So using the above formula and by solving the integral, we get
\[ \Rightarrow \ln \left( {y + 1} \right) = \dfrac{{{x^2}}}{2} + x + c\]
As we know by the property of natural logarithm
$
\ln x = y \\
\Rightarrow x = {e^y} \\
$
So using this in the above equation, we have
\[
\Rightarrow y + 1 = {e^{\dfrac{{{x^2}}}{2} + x + c}} \\
\Rightarrow y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1 \\
\]
Hence, the solution of the given equation is\[y = {e^{\dfrac{{{x^2}}}{2} + x + c}} - 1\]
Note- To solve any differential equation, rearranging of the equation in the correct form at the beginning is a very basic step. Re-arrangement should be made in such a way as the terms on L.H.S. and R.H.S. must contain different variables. $\ln $ in the solution represents natural logarithm which means logarithm with base $e$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

