     Question Answers

# Solve the equation ${\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos \theta } \right)^3}\left( {\sin \theta } \right) = \dfrac{1}{4}$ for the value of $\theta$.  Hint- Here, we will be simplifying the LHS of the given equation by using the formulas which are $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$ and $\cos 2\theta = \left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]$. Then, with the help of the condition i.e., when $\sin x = - 1$ then $x = 2n\pi - \dfrac{\pi }{2}$ we will find the required values of $\theta$.

The given equation is ${\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos \theta } \right)^3}\left( {\sin \theta } \right) = \dfrac{1}{4}$.
This equation can be simplified as under
$\Rightarrow \left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\sin \theta } \right)}^2} - {{\left( {\cos \theta } \right)}^2}} \right] = \dfrac{1}{4} \\ \Rightarrow - 4\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1 \\ \Rightarrow - 2\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1{\text{ }} \to {\text{(1)}} \\$
As we know that $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$ and $\cos 2\theta = \left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]$
Using the above formulas, equation (1) becomes,
$\Rightarrow - 2\left[ {\sin 2\theta } \right]\left[ {\cos 2\theta } \right] = 1 \\ \Rightarrow - \left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] = 1{\text{ }} \to {\text{(2)}} \\$
In the formula $\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)$ replace $\theta$ by $2\theta$, we get
$\Rightarrow \sin 2\left( {2\theta } \right) = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\ \Rightarrow \sin 4\theta = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(3)}} \\$
Using equation (3) in equation (2), we get
$\Rightarrow - \left[ {\sin 4\theta } \right] = 1 \\ \Rightarrow \sin 4\theta = - 1 \\$
Also we know that when $\sin x = - 1$ then $x = 2n\pi - \dfrac{\pi }{2}$ where $n \in Z$ (Z is set of integers)
Replacing x in the above condition by $4\theta$, we get
$4\theta = 2n\pi - \dfrac{\pi }{2} \\ \Rightarrow \theta = \dfrac{{2n\pi }}{4} - \dfrac{\pi }{{2 \times 4}} \\ \Rightarrow \theta = \dfrac{{n\pi }}{2} - \dfrac{\pi }{8}{\text{ where }}n \in Z \\$

Note- In these types of problems, we convert the trigonometric functions of smaller angle (i.e., $\theta$ in this case) in the given equation to the trigonometric functions of larger angle (i.e. $4\theta$ in this case). Also, in this problem $\sin 4\theta = - 1$ is coming after simplification which means the values of $4\theta$ which are possible are $2n\pi - \dfrac{\pi }{2}$ where n belongs to the set of integers.
View Notes
Sin Theta Formula  Cos Theta Formula  Sin Cos Tan Values  Sin 2x Cos 2x  Cos Square Theta Formula  Sin Cos Formula  Solve the Pair of Linear Equation  How to Solve Linear Differential Equation?  Tan Theta Formula  Cos 0  