Solve the equation \[{\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos \theta } \right)^3}\left( {\sin \theta } \right) = \dfrac{1}{4}\] for the value of $\theta $.
Last updated date: 30th Mar 2023
•
Total views: 305.7k
•
Views today: 5.87k
Answer
305.7k+ views
Hint- Here, we will be simplifying the LHS of the given equation by using the formulas which are \[\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] and \[\cos 2\theta = \left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]. Then, with the help of the condition i.e., when \[\sin x = - 1\] then \[x = 2n\pi - \dfrac{\pi }{2}\] we will find the required values of $\theta $.
“Complete step-by-step answer:”
The given equation is \[{\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos \theta } \right)^3}\left( {\sin \theta } \right) = \dfrac{1}{4}\].
This equation can be simplified as under
\[
\Rightarrow \left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\sin \theta } \right)}^2} - {{\left( {\cos \theta } \right)}^2}} \right] = \dfrac{1}{4} \\
\Rightarrow - 4\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1 \\
\Rightarrow - 2\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1{\text{ }} \to {\text{(1)}} \\
\]
As we know that \[\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] and \[\cos 2\theta = \left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the above formulas, equation (1) becomes,
\[
\Rightarrow - 2\left[ {\sin 2\theta } \right]\left[ {\cos 2\theta } \right] = 1 \\
\Rightarrow - \left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] = 1{\text{ }} \to {\text{(2)}} \\
\]
In the formula \[\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] replace \[\theta \] by \[2\theta \], we get
\[
\Rightarrow \sin 2\left( {2\theta } \right) = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow \sin 4\theta = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(3)}} \\
\]
Using equation (3) in equation (2), we get
\[
\Rightarrow - \left[ {\sin 4\theta } \right] = 1 \\
\Rightarrow \sin 4\theta = - 1 \\
\]
Also we know that when \[\sin x = - 1\] then \[x = 2n\pi - \dfrac{\pi }{2}\] where $n \in Z$ (Z is set of integers)
Replacing x in the above condition by \[4\theta \], we get
\[
4\theta = 2n\pi - \dfrac{\pi }{2} \\
\Rightarrow \theta = \dfrac{{2n\pi }}{4} - \dfrac{\pi }{{2 \times 4}} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} - \dfrac{\pi }{8}{\text{ where }}n \in Z \\
\]
Note- In these types of problems, we convert the trigonometric functions of smaller angle (i.e., \[\theta \] in this case) in the given equation to the trigonometric functions of larger angle (i.e. \[4\theta \] in this case). Also, in this problem \[\sin 4\theta = - 1\] is coming after simplification which means the values of \[4\theta \] which are possible are \[2n\pi - \dfrac{\pi }{2}\] where n belongs to the set of integers.
“Complete step-by-step answer:”
The given equation is \[{\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos \theta } \right)^3}\left( {\sin \theta } \right) = \dfrac{1}{4}\].
This equation can be simplified as under
\[
\Rightarrow \left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\sin \theta } \right)}^2} - {{\left( {\cos \theta } \right)}^2}} \right] = \dfrac{1}{4} \\
\Rightarrow - 4\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1 \\
\Rightarrow - 2\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1{\text{ }} \to {\text{(1)}} \\
\]
As we know that \[\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] and \[\cos 2\theta = \left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]\]
Using the above formulas, equation (1) becomes,
\[
\Rightarrow - 2\left[ {\sin 2\theta } \right]\left[ {\cos 2\theta } \right] = 1 \\
\Rightarrow - \left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] = 1{\text{ }} \to {\text{(2)}} \\
\]
In the formula \[\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right)\] replace \[\theta \] by \[2\theta \], we get
\[
\Rightarrow \sin 2\left( {2\theta } \right) = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\
\Rightarrow \sin 4\theta = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(3)}} \\
\]
Using equation (3) in equation (2), we get
\[
\Rightarrow - \left[ {\sin 4\theta } \right] = 1 \\
\Rightarrow \sin 4\theta = - 1 \\
\]
Also we know that when \[\sin x = - 1\] then \[x = 2n\pi - \dfrac{\pi }{2}\] where $n \in Z$ (Z is set of integers)
Replacing x in the above condition by \[4\theta \], we get
\[
4\theta = 2n\pi - \dfrac{\pi }{2} \\
\Rightarrow \theta = \dfrac{{2n\pi }}{4} - \dfrac{\pi }{{2 \times 4}} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} - \dfrac{\pi }{8}{\text{ where }}n \in Z \\
\]
Note- In these types of problems, we convert the trigonometric functions of smaller angle (i.e., \[\theta \] in this case) in the given equation to the trigonometric functions of larger angle (i.e. \[4\theta \] in this case). Also, in this problem \[\sin 4\theta = - 1\] is coming after simplification which means the values of \[4\theta \] which are possible are \[2n\pi - \dfrac{\pi }{2}\] where n belongs to the set of integers.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
