Solve the differential equation:
$\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$.
Answer
Verified
505.8k+ views
Hint: Separate the terms with $x$ variable on one side and terms with $y$ variable on other side. And then solve the equation integrating both sides.
The given differential equation is $\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$. This can be simplified as:
\[
\Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\
\Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\
\Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\
\]
Integrating both sides, we’ll get:
\[ \Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,} \]
We know that \[\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C\], Using this in the above equation, we’ll get:
\[
\Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\
\Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\
\Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\
\Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\
\Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\
\]
Thus the solution of the differential equation is \[\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}\]
Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.
The given differential equation is $\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$. This can be simplified as:
\[
\Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\
\Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\
\Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\
\]
Integrating both sides, we’ll get:
\[ \Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,} \]
We know that \[\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C\], Using this in the above equation, we’ll get:
\[
\Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\
\Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\
\Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\
\Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\
\Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\
\]
Thus the solution of the differential equation is \[\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}\]
Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE