Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Solve the differential equation:
$\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$.

seo-qna
Last updated date: 29th Mar 2024
Total views: 417.6k
Views today: 12.17k
MVSAT 2024
Answer
VerifiedVerified
417.6k+ views
Hint: Separate the terms with $x$ variable on one side and terms with $y$ variable on other side. And then solve the equation integrating both sides.

The given differential equation is $\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$. This can be simplified as:
\[
   \Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\
   \Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\
   \Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\
\]
Integrating both sides, we’ll get:
\[ \Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,} \]
We know that \[\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C\], Using this in the above equation, we’ll get:
\[
   \Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\
   \Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\
   \Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\
   \Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\
   \Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\
\]
Thus the solution of the differential equation is \[\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}\]

Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.