Answer

Verified

467.7k+ views

Hint: Separate the terms with $x$ variable on one side and terms with $y$ variable on other side. And then solve the equation integrating both sides.

The given differential equation is $\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$. This can be simplified as:

\[

\Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\

\Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\

\Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\

\]

Integrating both sides, we’ll get:

\[ \Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,} \]

We know that \[\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C\], Using this in the above equation, we’ll get:

\[

\Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\

\Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\

\Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\

\Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\

\Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\

\]

Thus the solution of the differential equation is \[\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}\]

Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.

The given differential equation is $\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0$. This can be simplified as:

\[

\Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\

\Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\

\Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\

\]

Integrating both sides, we’ll get:

\[ \Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,} \]

We know that \[\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C\], Using this in the above equation, we’ll get:

\[

\Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\

\Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\

\Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\

\Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\

\Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\

\]

Thus the solution of the differential equation is \[\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}\]

Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.

Recently Updated Pages

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What organs are located on the left side of your body class 11 biology CBSE