
Solve the differential equation: ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$
Answer
496.5k+ views
Hint: To solve the above differential equation we will first try to split x and y terms with dx and dy, that is:
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation is in the form linear differential equation of first order, that is$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
And, the solution of above differential equation is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
Now, after comparing the equation (1) and (2) we will get function P(x) and Q(x) and then we will solve the equation we get to get our required answer.
Complete step-by-step solution:
We will first split the above given differential equation, that is ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$, such that term of x comes with dx and terms of y come with dy.
So, ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$ can be rewritten as:
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=-y\sqrt{1-{{x}^{2}}}dx+xdx+\sqrt{1-{{x}^{2}}}dx$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=\left( x+\left( 1-y \right)\sqrt{1-{{x}^{2}}} \right)dx$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation (1) is in the form of linear differential equation of first order, that is:
$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
So, $P\left( x \right)=\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}},Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
And, we know that solution of above equation (2) is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$, here ${{e}^{\int{P\left( x \right)dx}}}$ is also known as integrating factor.
So, integrating factor is:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}}}............\left( 3 \right)$
Let$x=\cos \theta $, so $dx=-\sin \theta d\theta $
Putting the value of x and dx in equation (3) we will get:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}(-\sin \theta )d\theta }}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{-\sin \theta }{{{\sin }^{3}}\theta }dx}}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{-{{\operatorname{cosec}}^{2}}\theta dx}}}$
And we know that $-{{\int{\operatorname{cosec}}}^{2}}\theta d\theta =\cot \theta +c$
So, ${{e}^{\int{P\left( x \right)dx}}}={{e}^{\cot \theta }}$
Now, we will put $x=\cos \theta $, in Q(x):
$Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
$Q\left( \theta \right)=\dfrac{\cos \theta }{{{\left( 1-{{\cos }^{2}}\theta \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta }{{{\sin }^{4}}\theta }+\dfrac{1}{{{\sin }^{3}}\theta }$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta }$
Now, we will put the value of ${{e}^{\int{P\left( x \right)dx}}}$, Q(x), and dx in equation $y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
$\Rightarrow y{{e}^{\cot \theta }}=\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta } \right)}\times {{e}^{\cot \theta }}\times \left( -\sin \theta \right)d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta -\int{\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{{{\operatorname{cosec}}^{2}}\theta \cot \theta }\times {{e}^{\cot \theta }}d\theta -\int{{{\operatorname{cosec}}^{2}}\theta }\times {{e}^{\cot \theta }}d\theta $
Let $\cot \theta =t$, then $dt=-{{\operatorname{cosec}}^{2}}\theta d\theta $
Now, we will put ‘t’ in place $\cot \theta $ and $dt$ in place of $-{{\operatorname{cosec}}^{2}}\theta d\theta $.
$\therefore y{{e}^{\cot \theta }}=\int{t}\times {{e}^{t}}dt+\int{{{e}^{t}}}dt$
We will use integration by parts as $\int u.v dx = u \int{v} dx - \int(u’)(v)dx$ to solve $\int{t}\times {{e}^{t}}dt$ where $u =t$ and $v= {{e}^{t}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}-\int{{{e}^{t}}dt+\int{{{e}^{t}}dt}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}+C$
Now, we know that $\cot \theta =t$, so:
$\Rightarrow y{{e}^{\cot \theta }}=\cot \theta \times {{e}^{\cot \theta }}+C$
So, $y=\cot \theta +C{{e}^{-\cot \theta }}$
Now, since we have assumed above that $x=\cos \theta $
So, $\sin \theta =\sqrt{1-{{x}^{2}}}$, so $\cot \theta =\dfrac{x}{\sqrt{1-{{x}^{2}}}}$
So, $y=\dfrac{x}{\sqrt{1-{{x}^{2}}}}+C{{e}^{-\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)}}$
This is our required solution.
Note: Since we have seen that there is a lot of calculation and integrating term in the above solution. So, students are required to be familiar with all integration types and formulas and avoid calculation mistakes and also assume such terms as t which will make our calculation easy.
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation is in the form linear differential equation of first order, that is$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
And, the solution of above differential equation is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
Now, after comparing the equation (1) and (2) we will get function P(x) and Q(x) and then we will solve the equation we get to get our required answer.
Complete step-by-step solution:
We will first split the above given differential equation, that is ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$, such that term of x comes with dx and terms of y come with dy.
So, ${{\left( 1-{{x}^{2}} \right)}^{2}}dy+\left( y\sqrt{1-{{x}^{2}}}-x-\sqrt{1-{{x}^{2}}} \right)dx=0$ can be rewritten as:
${{\left( 1-{{x}^{2}} \right)}^{2}}dy+y\sqrt{1-{{x}^{2}}}dx-xdx-\sqrt{1-{{x}^{2}}}dx=0$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=-y\sqrt{1-{{x}^{2}}}dx+xdx+\sqrt{1-{{x}^{2}}}dx$
$\Rightarrow {{\left( 1-{{x}^{2}} \right)}^{2}}dy=\left( x+\left( 1-y \right)\sqrt{1-{{x}^{2}}} \right)dx$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x+\left( 1-y \right)\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}-\dfrac{y\sqrt{1-{{x}^{2}}}}{{{\left( 1-{{x}^{2}} \right)}^{2}}}$
$\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}.............\left( 1 \right)$
Now, we can see that the above equation (1) is in the form of linear differential equation of first order, that is:
$\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right)...............\left( 2 \right)$
So, $P\left( x \right)=\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}},Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
And, we know that solution of above equation (2) is given by:
$y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$, here ${{e}^{\int{P\left( x \right)dx}}}$ is also known as integrating factor.
So, integrating factor is:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}}}............\left( 3 \right)$
Let$x=\cos \theta $, so $dx=-\sin \theta d\theta $
Putting the value of x and dx in equation (3) we will get:
${{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}(-\sin \theta )d\theta }}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{\dfrac{-\sin \theta }{{{\sin }^{3}}\theta }dx}}}$
$\Rightarrow {{e}^{\int{P\left( x \right)dx}}}={{e}^{\int{-{{\operatorname{cosec}}^{2}}\theta dx}}}$
And we know that $-{{\int{\operatorname{cosec}}}^{2}}\theta d\theta =\cot \theta +c$
So, ${{e}^{\int{P\left( x \right)dx}}}={{e}^{\cot \theta }}$
Now, we will put $x=\cos \theta $, in Q(x):
$Q\left( x \right)=\dfrac{x}{{{\left( 1-{{x}^{2}} \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}$
$Q\left( \theta \right)=\dfrac{\cos \theta }{{{\left( 1-{{\cos }^{2}}\theta \right)}^{2}}}+\dfrac{1}{{{\left( 1-{{\cos }^{2}}\theta \right)}^{\dfrac{3}{2}}}}$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta }{{{\sin }^{4}}\theta }+\dfrac{1}{{{\sin }^{3}}\theta }$
$\Rightarrow Q\left( \theta \right)=\dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta }$
Now, we will put the value of ${{e}^{\int{P\left( x \right)dx}}}$, Q(x), and dx in equation $y{{e}^{\int{P\left( x \right)dx}}}=\int{Q\left( x \right)}\times {{e}^{\int{P\left( x \right)dx}}}dx$
$\Rightarrow y{{e}^{\cot \theta }}=\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{4}}\theta } \right)}\times {{e}^{\cot \theta }}\times \left( -\sin \theta \right)d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta +\sin \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{\left( \dfrac{\cos \theta }{{{\sin }^{3}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta -\int{\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)}\times {{e}^{\cot \theta }}d\theta $
$\Rightarrow y{{e}^{\cot \theta }}=-\int{{{\operatorname{cosec}}^{2}}\theta \cot \theta }\times {{e}^{\cot \theta }}d\theta -\int{{{\operatorname{cosec}}^{2}}\theta }\times {{e}^{\cot \theta }}d\theta $
Let $\cot \theta =t$, then $dt=-{{\operatorname{cosec}}^{2}}\theta d\theta $
Now, we will put ‘t’ in place $\cot \theta $ and $dt$ in place of $-{{\operatorname{cosec}}^{2}}\theta d\theta $.
$\therefore y{{e}^{\cot \theta }}=\int{t}\times {{e}^{t}}dt+\int{{{e}^{t}}}dt$
We will use integration by parts as $\int u.v dx = u \int{v} dx - \int(u’)(v)dx$ to solve $\int{t}\times {{e}^{t}}dt$ where $u =t$ and $v= {{e}^{t}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}-\int{{{e}^{t}}dt+\int{{{e}^{t}}dt}}$
$\Rightarrow y{{e}^{\cot \theta }}=t{{e}^{t}}+C$
Now, we know that $\cot \theta =t$, so:
$\Rightarrow y{{e}^{\cot \theta }}=\cot \theta \times {{e}^{\cot \theta }}+C$
So, $y=\cot \theta +C{{e}^{-\cot \theta }}$
Now, since we have assumed above that $x=\cos \theta $
So, $\sin \theta =\sqrt{1-{{x}^{2}}}$, so $\cot \theta =\dfrac{x}{\sqrt{1-{{x}^{2}}}}$
So, $y=\dfrac{x}{\sqrt{1-{{x}^{2}}}}+C{{e}^{-\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)}}$
This is our required solution.
Note: Since we have seen that there is a lot of calculation and integrating term in the above solution. So, students are required to be familiar with all integration types and formulas and avoid calculation mistakes and also assume such terms as t which will make our calculation easy.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
