Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Solve:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}} = $

seo-qna
Last updated date: 23rd Jul 2024
Total views: 454.5k
Views today: 4.54k
Answer
VerifiedVerified
454.5k+ views
Hint: - Use \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
Given:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}}$
Last term of this series is \[\tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
\[ \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
Now, as we know
\[
  \tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} \\
   \Rightarrow 1 + \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} \\
   \Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} - 1 \\
   \Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b - \tan \left( {a - b} \right)}}{{\tan \left( {a - b} \right)}} \\
\]
So, applying this property in each term of the given series we get
\[
   \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right) \\
   \Rightarrow \left( {\dfrac{{\tan 2x - \tan x - \tan \left( {2x - x} \right)}}{{\tan \left( {2x - x} \right)}}} \right) + \left( {\dfrac{{\tan 3x - \tan 2x - \tan \left( {3x - 2x} \right)}}{{\tan \left( {3x - 2x} \right)}}} \right) + \left( {\dfrac{{\tan 4x - \tan 3x - \tan \left( {4x - 3x} \right)}}{{\tan \left( {4x - 3x} \right)}}} \right) + ........... \\
  .............. + \left( {\dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan \left( {nx + x - nx} \right)}}{{\tan \left( {nx + x - nx} \right)}}} \right) \\
   \Rightarrow \dfrac{{\tan 2x - \tan x - \tan x + \tan 3x - \tan 2x - \tan x + \tan 4x - \tan 3x - \tan x + .................. + \tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan x}}{{\tan x}} \\
\]
Now, we see many terms are cancel out the remaining terms are,
\[
   \Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... + \tan \left( {\left( {n + 1} \right)x} \right) - \tan x} \right)}}{{\tan x}} \\
   \Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... - \tan x} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
   \Rightarrow \dfrac{{ - \tan x - \tan x\left( {1 + 1 + 1 + ....................... + 1} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\]
As we know sum of 1 up to n terms is n
\[ \Rightarrow \dfrac{{\left( {\tan \left( {\left( {n + 1} \right)x} \right) - n\tan x} \right) - \tan x}}{{\tan x}} = \dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \left( {n + 1} \right)\tan x}}{{\tan x}}\]
So, this is the required sum of the given series.

Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.