Solve:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}} = $
Answer
365.7k+ views
Hint: - Use \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
Given:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}}$
Last term of this series is \[\tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
\[ \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
Now, as we know
\[
\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} \\
\Rightarrow 1 + \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} - 1 \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b - \tan \left( {a - b} \right)}}{{\tan \left( {a - b} \right)}} \\
\]
So, applying this property in each term of the given series we get
\[
\Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right) \\
\Rightarrow \left( {\dfrac{{\tan 2x - \tan x - \tan \left( {2x - x} \right)}}{{\tan \left( {2x - x} \right)}}} \right) + \left( {\dfrac{{\tan 3x - \tan 2x - \tan \left( {3x - 2x} \right)}}{{\tan \left( {3x - 2x} \right)}}} \right) + \left( {\dfrac{{\tan 4x - \tan 3x - \tan \left( {4x - 3x} \right)}}{{\tan \left( {4x - 3x} \right)}}} \right) + ........... \\
.............. + \left( {\dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan \left( {nx + x - nx} \right)}}{{\tan \left( {nx + x - nx} \right)}}} \right) \\
\Rightarrow \dfrac{{\tan 2x - \tan x - \tan x + \tan 3x - \tan 2x - \tan x + \tan 4x - \tan 3x - \tan x + .................. + \tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan x}}{{\tan x}} \\
\]
Now, we see many terms are cancel out the remaining terms are,
\[
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... + \tan \left( {\left( {n + 1} \right)x} \right) - \tan x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... - \tan x} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x - \tan x\left( {1 + 1 + 1 + ....................... + 1} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\]
As we know sum of 1 up to n terms is n
\[ \Rightarrow \dfrac{{\left( {\tan \left( {\left( {n + 1} \right)x} \right) - n\tan x} \right) - \tan x}}{{\tan x}} = \dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \left( {n + 1} \right)\tan x}}{{\tan x}}\]
So, this is the required sum of the given series.
Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.
Given:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}}$
Last term of this series is \[\tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
\[ \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
Now, as we know
\[
\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} \\
\Rightarrow 1 + \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} - 1 \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b - \tan \left( {a - b} \right)}}{{\tan \left( {a - b} \right)}} \\
\]
So, applying this property in each term of the given series we get
\[
\Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right) \\
\Rightarrow \left( {\dfrac{{\tan 2x - \tan x - \tan \left( {2x - x} \right)}}{{\tan \left( {2x - x} \right)}}} \right) + \left( {\dfrac{{\tan 3x - \tan 2x - \tan \left( {3x - 2x} \right)}}{{\tan \left( {3x - 2x} \right)}}} \right) + \left( {\dfrac{{\tan 4x - \tan 3x - \tan \left( {4x - 3x} \right)}}{{\tan \left( {4x - 3x} \right)}}} \right) + ........... \\
.............. + \left( {\dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan \left( {nx + x - nx} \right)}}{{\tan \left( {nx + x - nx} \right)}}} \right) \\
\Rightarrow \dfrac{{\tan 2x - \tan x - \tan x + \tan 3x - \tan 2x - \tan x + \tan 4x - \tan 3x - \tan x + .................. + \tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan x}}{{\tan x}} \\
\]
Now, we see many terms are cancel out the remaining terms are,
\[
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... + \tan \left( {\left( {n + 1} \right)x} \right) - \tan x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... - \tan x} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x - \tan x\left( {1 + 1 + 1 + ....................... + 1} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\]
As we know sum of 1 up to n terms is n
\[ \Rightarrow \dfrac{{\left( {\tan \left( {\left( {n + 1} \right)x} \right) - n\tan x} \right) - \tan x}}{{\tan x}} = \dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \left( {n + 1} \right)\tan x}}{{\tan x}}\]
So, this is the required sum of the given series.
Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.
Last updated date: 29th Sep 2023
•
Total views: 365.7k
•
Views today: 4.65k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

The poet says Beauty is heard in Can you hear beauty class 6 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
