
Solve:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}} = $
Answer
623.7k+ views
Hint: - Use \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
Given:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}}$
Last term of this series is \[\tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
\[ \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
Now, as we know
\[
\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} \\
\Rightarrow 1 + \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} - 1 \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b - \tan \left( {a - b} \right)}}{{\tan \left( {a - b} \right)}} \\
\]
So, applying this property in each term of the given series we get
\[
\Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right) \\
\Rightarrow \left( {\dfrac{{\tan 2x - \tan x - \tan \left( {2x - x} \right)}}{{\tan \left( {2x - x} \right)}}} \right) + \left( {\dfrac{{\tan 3x - \tan 2x - \tan \left( {3x - 2x} \right)}}{{\tan \left( {3x - 2x} \right)}}} \right) + \left( {\dfrac{{\tan 4x - \tan 3x - \tan \left( {4x - 3x} \right)}}{{\tan \left( {4x - 3x} \right)}}} \right) + ........... \\
.............. + \left( {\dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan \left( {nx + x - nx} \right)}}{{\tan \left( {nx + x - nx} \right)}}} \right) \\
\Rightarrow \dfrac{{\tan 2x - \tan x - \tan x + \tan 3x - \tan 2x - \tan x + \tan 4x - \tan 3x - \tan x + .................. + \tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan x}}{{\tan x}} \\
\]
Now, we see many terms are cancel out the remaining terms are,
\[
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... + \tan \left( {\left( {n + 1} \right)x} \right) - \tan x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... - \tan x} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x - \tan x\left( {1 + 1 + 1 + ....................... + 1} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\]
As we know sum of 1 up to n terms is n
\[ \Rightarrow \dfrac{{\left( {\tan \left( {\left( {n + 1} \right)x} \right) - n\tan x} \right) - \tan x}}{{\tan x}} = \dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \left( {n + 1} \right)\tan x}}{{\tan x}}\]
So, this is the required sum of the given series.
Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.
Given:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}}$
Last term of this series is \[\tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
\[ \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
Now, as we know
\[
\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} \\
\Rightarrow 1 + \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} - 1 \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b - \tan \left( {a - b} \right)}}{{\tan \left( {a - b} \right)}} \\
\]
So, applying this property in each term of the given series we get
\[
\Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right) \\
\Rightarrow \left( {\dfrac{{\tan 2x - \tan x - \tan \left( {2x - x} \right)}}{{\tan \left( {2x - x} \right)}}} \right) + \left( {\dfrac{{\tan 3x - \tan 2x - \tan \left( {3x - 2x} \right)}}{{\tan \left( {3x - 2x} \right)}}} \right) + \left( {\dfrac{{\tan 4x - \tan 3x - \tan \left( {4x - 3x} \right)}}{{\tan \left( {4x - 3x} \right)}}} \right) + ........... \\
.............. + \left( {\dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan \left( {nx + x - nx} \right)}}{{\tan \left( {nx + x - nx} \right)}}} \right) \\
\Rightarrow \dfrac{{\tan 2x - \tan x - \tan x + \tan 3x - \tan 2x - \tan x + \tan 4x - \tan 3x - \tan x + .................. + \tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan x}}{{\tan x}} \\
\]
Now, we see many terms are cancel out the remaining terms are,
\[
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... + \tan \left( {\left( {n + 1} \right)x} \right) - \tan x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... - \tan x} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x - \tan x\left( {1 + 1 + 1 + ....................... + 1} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\]
As we know sum of 1 up to n terms is n
\[ \Rightarrow \dfrac{{\left( {\tan \left( {\left( {n + 1} \right)x} \right) - n\tan x} \right) - \tan x}}{{\tan x}} = \dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \left( {n + 1} \right)\tan x}}{{\tan x}}\]
So, this is the required sum of the given series.
Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

