
Solve:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}} = $
Answer
537k+ views
Hint: - Use \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\]
Given:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}}$
Last term of this series is \[\tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
\[ \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
Now, as we know
\[
\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} \\
\Rightarrow 1 + \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} - 1 \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b - \tan \left( {a - b} \right)}}{{\tan \left( {a - b} \right)}} \\
\]
So, applying this property in each term of the given series we get
\[
\Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right) \\
\Rightarrow \left( {\dfrac{{\tan 2x - \tan x - \tan \left( {2x - x} \right)}}{{\tan \left( {2x - x} \right)}}} \right) + \left( {\dfrac{{\tan 3x - \tan 2x - \tan \left( {3x - 2x} \right)}}{{\tan \left( {3x - 2x} \right)}}} \right) + \left( {\dfrac{{\tan 4x - \tan 3x - \tan \left( {4x - 3x} \right)}}{{\tan \left( {4x - 3x} \right)}}} \right) + ........... \\
.............. + \left( {\dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan \left( {nx + x - nx} \right)}}{{\tan \left( {nx + x - nx} \right)}}} \right) \\
\Rightarrow \dfrac{{\tan 2x - \tan x - \tan x + \tan 3x - \tan 2x - \tan x + \tan 4x - \tan 3x - \tan x + .................. + \tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan x}}{{\tan x}} \\
\]
Now, we see many terms are cancel out the remaining terms are,
\[
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... + \tan \left( {\left( {n + 1} \right)x} \right) - \tan x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... - \tan x} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x - \tan x\left( {1 + 1 + 1 + ....................... + 1} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\]
As we know sum of 1 up to n terms is n
\[ \Rightarrow \dfrac{{\left( {\tan \left( {\left( {n + 1} \right)x} \right) - n\tan x} \right) - \tan x}}{{\tan x}} = \dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \left( {n + 1} \right)\tan x}}{{\tan x}}\]
So, this is the required sum of the given series.
Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.
Given:
$\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}}$
Last term of this series is \[\tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
\[ \Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right)\]
Now, as we know
\[
\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} \\
\Rightarrow 1 + \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b}}{{\tan \left( {a - b} \right)}} - 1 \\
\Rightarrow \tan a\tan b = \dfrac{{\tan a - \tan b - \tan \left( {a - b} \right)}}{{\tan \left( {a - b} \right)}} \\
\]
So, applying this property in each term of the given series we get
\[
\Rightarrow \tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ....... + \tan nx\tan \left( {\left( {n + 1} \right)x} \right) \\
\Rightarrow \left( {\dfrac{{\tan 2x - \tan x - \tan \left( {2x - x} \right)}}{{\tan \left( {2x - x} \right)}}} \right) + \left( {\dfrac{{\tan 3x - \tan 2x - \tan \left( {3x - 2x} \right)}}{{\tan \left( {3x - 2x} \right)}}} \right) + \left( {\dfrac{{\tan 4x - \tan 3x - \tan \left( {4x - 3x} \right)}}{{\tan \left( {4x - 3x} \right)}}} \right) + ........... \\
.............. + \left( {\dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan \left( {nx + x - nx} \right)}}{{\tan \left( {nx + x - nx} \right)}}} \right) \\
\Rightarrow \dfrac{{\tan 2x - \tan x - \tan x + \tan 3x - \tan 2x - \tan x + \tan 4x - \tan 3x - \tan x + .................. + \tan \left( {\left( {n + 1} \right)x} \right) - \tan nx - \tan x}}{{\tan x}} \\
\]
Now, we see many terms are cancel out the remaining terms are,
\[
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... + \tan \left( {\left( {n + 1} \right)x} \right) - \tan x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x + \left( { - \tan x - \tan x - ..................... - \tan x} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\Rightarrow \dfrac{{ - \tan x - \tan x\left( {1 + 1 + 1 + ....................... + 1} \right) + \tan \left( {\left( {n + 1} \right)x} \right)}}{{\tan x}} \\
\]
As we know sum of 1 up to n terms is n
\[ \Rightarrow \dfrac{{\left( {\tan \left( {\left( {n + 1} \right)x} \right) - n\tan x} \right) - \tan x}}{{\tan x}} = \dfrac{{\tan \left( {\left( {n + 1} \right)x} \right) - \left( {n + 1} \right)\tan x}}{{\tan x}}\]
So, this is the required sum of the given series.
Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
