
Solve for x: \[{{\tan }^{-1}}x={{\cos }^{-1}}\dfrac{5}{13}\] Solve for \[\left[ 0,2\pi \right].....\] How?
Answer
466.2k+ views
Hint: These types of problems are pretty straight forward and are very easy to solve. It is a very good demonstration and example for trigonometric equations and general values. For these type of problems what we first do is, convert both the sides of the equation to a common form, which means, we can convert both the sides of the equation to either $\sin $ or $\cos $ or $\tan $ or $\cot $ or $\sec $ or $\text{cosec}$ . After we have converted it in the required form, we need to check for the quadrant in which the right hand side value lies and then accordingly we need to manipulate the given equation.
Complete step by step answer:
Now, we start off with the given problem as,
We convert the right hand side of the equation to its tangent form. If we construct an imaginary right angled triangle, and we consider the base as \[5\] and the hypotenuse as \[13\], then we get, \[\cos \theta =\dfrac{5}{13}\] . We will then get the value of \[\tan \theta \] as \[\tan \theta =\dfrac{12}{5}\] . We can therefore replace \[{{\cos }^{-1}}\dfrac{5}{13}\] by \[{{\tan }^{-1}}\dfrac{12}{5}\] .
Now, equating both the sides of the equation, we write,
\[{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{12}{5}\]
Now, comparing both the sides of the equation, we get the value of $x$ as,
\[\Rightarrow x=\dfrac{12}{5}\]
Note: For these types of above given problems we need to be very careful while applying the properties of inverse functions. A negative sign can cause a problem in the solution, which we can easily handle using the quadrant in which the value lies. We also need to keep in mind all the trigonometric general values, which become handy at critical times while solving complex problems of similar kind.
Complete step by step answer:
Now, we start off with the given problem as,
We convert the right hand side of the equation to its tangent form. If we construct an imaginary right angled triangle, and we consider the base as \[5\] and the hypotenuse as \[13\], then we get, \[\cos \theta =\dfrac{5}{13}\] . We will then get the value of \[\tan \theta \] as \[\tan \theta =\dfrac{12}{5}\] . We can therefore replace \[{{\cos }^{-1}}\dfrac{5}{13}\] by \[{{\tan }^{-1}}\dfrac{12}{5}\] .
Now, equating both the sides of the equation, we write,
\[{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{12}{5}\]
Now, comparing both the sides of the equation, we get the value of $x$ as,
\[\Rightarrow x=\dfrac{12}{5}\]
Note: For these types of above given problems we need to be very careful while applying the properties of inverse functions. A negative sign can cause a problem in the solution, which we can easily handle using the quadrant in which the value lies. We also need to keep in mind all the trigonometric general values, which become handy at critical times while solving complex problems of similar kind.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
