
Solve by matrix method:
2x + 3y + 3z = 5
x – 2y + z = -4
3x – y – 2z = 3
Answer
568.5k+ views
Hint: In order to solve this question, we will use the formula, $X={{A}^{-1}}B$ where, $X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$ and $B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$. So we will have to find ${{A}^{-1}}$, for that, we will first find the determinant of matrix A, that is $\left| A \right|$, then we will find the cofactors of matrix A, take its transpose, and that will be $AdjA$. Therefore, we will be able to get the inverse of matrix A using ${{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$.and hence We then substitute all the obtained values of ${{A}^{-1}}$ and $B$in the main formula and do necessary calculations to get the value of x, y and z accordingly.
Complete step-by-step answer:
It is given in the question that, we have to solve the system of equations,
$2x+3y-5=0$
\[x-\text{2}y+z=-4\]
\[3x-y-2z=3\] using the matrix method.
So, first we have to covert the given equations into the matrix form. So, we can write it as follows.
\[\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]\].
Here, \[A=\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right],X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]\].
Now, we will find the determinant of matrix A, that is, $\left| A \right|$. So, we get,
$\Rightarrow \left| A \right|=\left| \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right|$.
\[\Rightarrow \left| A \right|=2\left( 4+1 \right)-3\left( -2-3 \right)+3\left( -1+6 \right)\].
\[\Rightarrow \left| A \right|=2\left( 5 \right)-3\left( -5 \right)+3\left( 5 \right)\].
\[\Rightarrow \left| A \right|=10+15+15\].
\[\Rightarrow \left| A \right|=40\].
As we have $\left| A \right|\ne 0$. It means that the system of equations is consistent and has a unique solution.
Now, we have AX = B, from this, we get, $X=\dfrac{B}{A}$, which can be written as, $X={{A}^{-1}}B$.
Now, we will find ${{A}^{-1}}$ so, we will find the adjoint of matrix A, that is Adj A. So, let us assume ${{c}_{ij}}$ as the cofactors of the elements ${{a}_{ij}}$ in $A\left[ {{a}_{ij}} \right]$. So, we get,
\[\Rightarrow {{c}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
-2 & 1 \\
-1 & -2 \\
\end{matrix} \right|=1\left( 4+1 \right)=5\].
\[\Rightarrow {{c}_{12}}={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
1 & 1 \\
3 & -2 \\
\end{matrix} \right|=\left( -1 \right)\left( -2-3 \right)=5\].
\[\Rightarrow {{c}_{13}}={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
1 & -2 \\
3 & -1 \\
\end{matrix} \right|=1\left( -1+6 \right)=5\].
\[\Rightarrow {{c}_{21}}={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
3 & 3 \\
-1 & -2 \\
\end{matrix} \right|=\left( -1 \right)\left( -6+3 \right)\].
\[\Rightarrow {{c}_{22}}={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
2 & 3 \\
3 & -2 \\
\end{matrix} \right|=1\left( -4-9 \right)=-13\].
\[\Rightarrow {{c}_{23}}={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|=\left( -1 \right)\left( -2-9 \right)=11\].
\[\Rightarrow {{c}_{31}}={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
3 & 3 \\
-2 & 1 \\
\end{matrix} \right|=1\left( 3+6 \right)=9\].
\[\Rightarrow {{c}_{32}}={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
2 & 3 \\
1 & 1 \\
\end{matrix} \right|=\left( -1 \right)\left( 2-3 \right)=1\].
\[\Rightarrow {{c}_{33}}={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
2 & 3 \\
1 & -2 \\
\end{matrix} \right|=1\left( -4-3 \right)=-7\].
Therefore, we get the matrix form as, $\left[ \begin{matrix}
5 & 5 & 5 \\
3 & -13 & 11 \\
9 & 1 & -7 \\
\end{matrix} \right]$.
Now, on taking the transpose of the above matrix, we will get $AdjA$ as,
$\Rightarrow AdjA={{\left[ \begin{matrix}
5 & 5 & 5 \\
3 & -13 & 11 \\
9 & 1 & -7 \\
\end{matrix} \right]}^{T}}$.
$\Rightarrow AdjA=\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$.
Now, we know that ${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$. So, we get,
$\Rightarrow {{A}^{-1}}=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$.
We know that $X={{A}^{-1}}B$. So, here we have $X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$.
Therefore, we can write,
$\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$.
Now, we will perform the multiplication of the two matrices on the RHS. So, we can write,
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
5\left( 5 \right)+3\left( -4 \right)+9\left( 3 \right) \\
5\left( 5 \right)+\left( -13 \right)\left( -4 \right)+1\left( 3 \right) \\
5\left( 5 \right)+11\left( -4 \right)+\left( -7 \right)\left( 3 \right) \\
\end{matrix} \right]\].
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
25-12+27 \\
25+52+3 \\
25-44-21 \\
\end{matrix} \right]\].
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
40 \\
80 \\
-40 \\
\end{matrix} \right]\].
Now, we will take $\dfrac{1}{40}$ and multiply it with the terms inside the matrix, as it is a constant and we know that constants can be multiplied with the terms inside a matrix. So, we will get,
$\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
40\times \dfrac{1}{40} \\
80\times \dfrac{1}{40} \\
-40\times \dfrac{1}{40} \\
\end{matrix} \right]$.
$\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
-1 \\
\end{matrix} \right]$.
Therefore, we get the values of x = 1, y = 2 and z = -1.
Note: We should know that transpose is formed by just interchanging the rows and columns of the given matrix. We should solve every step of this problem carefully as it involves lengthy calculations which may lead to committing the mistake. Similarly, we can expect problems to solve the given linear set of equations by using Cramer’s method, Gauss Jordan method or by elementary row transformations.
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$ and $B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$. So we will have to find ${{A}^{-1}}$, for that, we will first find the determinant of matrix A, that is $\left| A \right|$, then we will find the cofactors of matrix A, take its transpose, and that will be $AdjA$. Therefore, we will be able to get the inverse of matrix A using ${{A}^{-1}}=\dfrac{AdjA}{\left| A \right|}$.and hence We then substitute all the obtained values of ${{A}^{-1}}$ and $B$in the main formula and do necessary calculations to get the value of x, y and z accordingly.
Complete step-by-step answer:
It is given in the question that, we have to solve the system of equations,
$2x+3y-5=0$
\[x-\text{2}y+z=-4\]
\[3x-y-2z=3\] using the matrix method.
So, first we have to covert the given equations into the matrix form. So, we can write it as follows.
\[\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]\].
Here, \[A=\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right],X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]\].
Now, we will find the determinant of matrix A, that is, $\left| A \right|$. So, we get,
$\Rightarrow \left| A \right|=\left| \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right|$.
\[\Rightarrow \left| A \right|=2\left( 4+1 \right)-3\left( -2-3 \right)+3\left( -1+6 \right)\].
\[\Rightarrow \left| A \right|=2\left( 5 \right)-3\left( -5 \right)+3\left( 5 \right)\].
\[\Rightarrow \left| A \right|=10+15+15\].
\[\Rightarrow \left| A \right|=40\].
As we have $\left| A \right|\ne 0$. It means that the system of equations is consistent and has a unique solution.
Now, we have AX = B, from this, we get, $X=\dfrac{B}{A}$, which can be written as, $X={{A}^{-1}}B$.
Now, we will find ${{A}^{-1}}$ so, we will find the adjoint of matrix A, that is Adj A. So, let us assume ${{c}_{ij}}$ as the cofactors of the elements ${{a}_{ij}}$ in $A\left[ {{a}_{ij}} \right]$. So, we get,
\[\Rightarrow {{c}_{11}}={{\left( -1 \right)}^{1+1}}\left| \begin{matrix}
-2 & 1 \\
-1 & -2 \\
\end{matrix} \right|=1\left( 4+1 \right)=5\].
\[\Rightarrow {{c}_{12}}={{\left( -1 \right)}^{1+2}}\left| \begin{matrix}
1 & 1 \\
3 & -2 \\
\end{matrix} \right|=\left( -1 \right)\left( -2-3 \right)=5\].
\[\Rightarrow {{c}_{13}}={{\left( -1 \right)}^{1+3}}\left| \begin{matrix}
1 & -2 \\
3 & -1 \\
\end{matrix} \right|=1\left( -1+6 \right)=5\].
\[\Rightarrow {{c}_{21}}={{\left( -1 \right)}^{2+1}}\left| \begin{matrix}
3 & 3 \\
-1 & -2 \\
\end{matrix} \right|=\left( -1 \right)\left( -6+3 \right)\].
\[\Rightarrow {{c}_{22}}={{\left( -1 \right)}^{2+2}}\left| \begin{matrix}
2 & 3 \\
3 & -2 \\
\end{matrix} \right|=1\left( -4-9 \right)=-13\].
\[\Rightarrow {{c}_{23}}={{\left( -1 \right)}^{2+3}}\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|=\left( -1 \right)\left( -2-9 \right)=11\].
\[\Rightarrow {{c}_{31}}={{\left( -1 \right)}^{3+1}}\left| \begin{matrix}
3 & 3 \\
-2 & 1 \\
\end{matrix} \right|=1\left( 3+6 \right)=9\].
\[\Rightarrow {{c}_{32}}={{\left( -1 \right)}^{3+2}}\left| \begin{matrix}
2 & 3 \\
1 & 1 \\
\end{matrix} \right|=\left( -1 \right)\left( 2-3 \right)=1\].
\[\Rightarrow {{c}_{33}}={{\left( -1 \right)}^{3+3}}\left| \begin{matrix}
2 & 3 \\
1 & -2 \\
\end{matrix} \right|=1\left( -4-3 \right)=-7\].
Therefore, we get the matrix form as, $\left[ \begin{matrix}
5 & 5 & 5 \\
3 & -13 & 11 \\
9 & 1 & -7 \\
\end{matrix} \right]$.
Now, on taking the transpose of the above matrix, we will get $AdjA$ as,
$\Rightarrow AdjA={{\left[ \begin{matrix}
5 & 5 & 5 \\
3 & -13 & 11 \\
9 & 1 & -7 \\
\end{matrix} \right]}^{T}}$.
$\Rightarrow AdjA=\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$.
Now, we know that ${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$. So, we get,
$\Rightarrow {{A}^{-1}}=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$.
We know that $X={{A}^{-1}}B$. So, here we have $X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right],{{A}^{-1}}=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$.
Therefore, we can write,
$\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$.
Now, we will perform the multiplication of the two matrices on the RHS. So, we can write,
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
5\left( 5 \right)+3\left( -4 \right)+9\left( 3 \right) \\
5\left( 5 \right)+\left( -13 \right)\left( -4 \right)+1\left( 3 \right) \\
5\left( 5 \right)+11\left( -4 \right)+\left( -7 \right)\left( 3 \right) \\
\end{matrix} \right]\].
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
25-12+27 \\
25+52+3 \\
25-44-21 \\
\end{matrix} \right]\].
\[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{40}\left[ \begin{matrix}
40 \\
80 \\
-40 \\
\end{matrix} \right]\].
Now, we will take $\dfrac{1}{40}$ and multiply it with the terms inside the matrix, as it is a constant and we know that constants can be multiplied with the terms inside a matrix. So, we will get,
$\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
40\times \dfrac{1}{40} \\
80\times \dfrac{1}{40} \\
-40\times \dfrac{1}{40} \\
\end{matrix} \right]$.
$\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
1 \\
2 \\
-1 \\
\end{matrix} \right]$.
Therefore, we get the values of x = 1, y = 2 and z = -1.
Note: We should know that transpose is formed by just interchanging the rows and columns of the given matrix. We should solve every step of this problem carefully as it involves lengthy calculations which may lead to committing the mistake. Similarly, we can expect problems to solve the given linear set of equations by using Cramer’s method, Gauss Jordan method or by elementary row transformations.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

