Sketch the graph $y=\left| x-5 \right|$. Evaluate $\int\limits_{0}^{1}{\left| x-5 \right|dx}$. What does this value of the integral represent on the graph?
Answer
278.7k+ views
Hint: We explain the term absolute value of a number. How the modulus function always remains positive. We expand the function and break it into two parts. We also try to find the domain and the change of the graph at the particular point of $x=5$.
Complete step by step answer:
Modulus function $f\left( x \right)=\left| x \right|$ works as the distance of the number from 0. The number can be both positive and negative but the distance of that number will always be positive. Distance can never be negative.
In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $\left| x \right|$. We can say $\left| x \right|\ge 0$.
We can express the function $f\left( x \right)=\left| x \right|$ as $f\left( x \right)=\left\{ \begin{align}
& x & \left( x\ge 0 \right) \\
& -x & \left( x<0 \right) \\
\end{align} \right.$.
We can write $y=\left| x-5 \right|$ depending on the change of the graph.
So, $y=\left\{ \begin{align}
& x-5 & \left( x\ge 5 \right) \\
& 5-x & \left( x<5 \right) \\
\end{align} \right.$
We can see in the domain of $\left[ 0,1 \right]$ for $\int\limits_{0}^{1}{\left| x-5 \right|dx}$, the equation becomes $y=5-x$.
Therefore, $\int\limits_{0}^{1}{\left| x-5 \right|dx}=\int\limits_{0}^{1}{\left( 5-x \right)dx}$. We use the formula of $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Therefore, \[\int\limits_{0}^{1}{\left| x-5 \right|dx}=\left[ 5x-\dfrac{{{x}^{2}}}{2} \right]_{0}^{1}=5-\dfrac{1}{2}=\dfrac{9}{2}\].
This value indicates the area under the line $y=5-x$ in the region bounded by lines $y=0$, $x=0$ and $x=1$.
Note: The only time the absolute value becomes 0 is when the number itself is 0. For any other number the absolute value is greater than 0. Therefore, we can say $\left| x \right|>0$ when $x\ne 0$. In our given function $y=\left| x-5 \right|$ the absolute value reaches at 5.
Complete step by step answer:
Modulus function $f\left( x \right)=\left| x \right|$ works as the distance of the number from 0. The number can be both positive and negative but the distance of that number will always be positive. Distance can never be negative.
In mathematical notation we express it with modulus value. Let a number be x whose sign is not mentioned. The absolute value of that number will be $\left| x \right|$. We can say $\left| x \right|\ge 0$.
We can express the function $f\left( x \right)=\left| x \right|$ as $f\left( x \right)=\left\{ \begin{align}
& x & \left( x\ge 0 \right) \\
& -x & \left( x<0 \right) \\
\end{align} \right.$.
We can write $y=\left| x-5 \right|$ depending on the change of the graph.
So, $y=\left\{ \begin{align}
& x-5 & \left( x\ge 5 \right) \\
& 5-x & \left( x<5 \right) \\
\end{align} \right.$

We can see in the domain of $\left[ 0,1 \right]$ for $\int\limits_{0}^{1}{\left| x-5 \right|dx}$, the equation becomes $y=5-x$.
Therefore, $\int\limits_{0}^{1}{\left| x-5 \right|dx}=\int\limits_{0}^{1}{\left( 5-x \right)dx}$. We use the formula of $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Therefore, \[\int\limits_{0}^{1}{\left| x-5 \right|dx}=\left[ 5x-\dfrac{{{x}^{2}}}{2} \right]_{0}^{1}=5-\dfrac{1}{2}=\dfrac{9}{2}\].
This value indicates the area under the line $y=5-x$ in the region bounded by lines $y=0$, $x=0$ and $x=1$.
Note: The only time the absolute value becomes 0 is when the number itself is 0. For any other number the absolute value is greater than 0. Therefore, we can say $\left| x \right|>0$ when $x\ne 0$. In our given function $y=\left| x-5 \right|$ the absolute value reaches at 5.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
