
How many six letter words be made out of the letters of ASSIST? In how many words the alphabet S alternates with other letters.
a) 120,6
b) 720,12
c) 120,12
d) 720,24
Answer
233.1k+ views
Hint: These types of questions involve the concept of permutation. First look at the letters we have got, see how many of them are the same and how many are unique so that we can have a fair idea about how many places we have to fill and then continue.
We have total 6 letters, out of which we have 3 S’s and 3 different letters i.e. ‘A’, ’I’ and ‘T’.
Since, we have 3 same letters, it would be easy to start with this
We can place all ‘S’s either at even places or at odd places i.e. we have 2 ways of placing ‘S’
∴ The remaining letters can be placed at the remaining places in 3! Ways i.e. 6 ways.
This is because if we fix ‘A’ at first place, then ‘I’ can have the rest of the two places, fixing ‘I’ at the second place, then ‘T’ is left with only one place which doesn’t need to be fixed. Same pattern follows if we fix ‘I’ in the first place. Thus we wrote 3!
∴ Total number of ways = 2×3!
=2×3×2×1
=12
Similarly, total no. of ways in which letter ‘S’ can be placed with other letters =5!
= 5×4×3×2×1
=120, 12
∴ Option ‘C’ is the right answer.
Note: Permutation of a set is an arrangement of its elements into a sequence or linear order, or if it is already ordered, a rearrangement of it’s elements. In this question also we rearranged the letters of the word ‘ASSIST’ which is acting as a set.
We have total 6 letters, out of which we have 3 S’s and 3 different letters i.e. ‘A’, ’I’ and ‘T’.
Since, we have 3 same letters, it would be easy to start with this
We can place all ‘S’s either at even places or at odd places i.e. we have 2 ways of placing ‘S’
∴ The remaining letters can be placed at the remaining places in 3! Ways i.e. 6 ways.
This is because if we fix ‘A’ at first place, then ‘I’ can have the rest of the two places, fixing ‘I’ at the second place, then ‘T’ is left with only one place which doesn’t need to be fixed. Same pattern follows if we fix ‘I’ in the first place. Thus we wrote 3!
∴ Total number of ways = 2×3!
=2×3×2×1
=12
Similarly, total no. of ways in which letter ‘S’ can be placed with other letters =5!
= 5×4×3×2×1
=120, 12
∴ Option ‘C’ is the right answer.
Note: Permutation of a set is an arrangement of its elements into a sequence or linear order, or if it is already ordered, a rearrangement of it’s elements. In this question also we rearranged the letters of the word ‘ASSIST’ which is acting as a set.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding How a Current Loop Acts as a Magnetic Dipole

