
Simplify the following integral:
\[\int{\dfrac{{{\left( {{x}^{4}}-x \right)}^{\dfrac{1}{4}}}}{{{x}^{5}}}dx}\]
(a) \[\dfrac{2}{5}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{-5}{4}}}+c\]
(b) \[\dfrac{4}{15}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{-5}{4}}}+c\]
(c) \[\dfrac{4}{15}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{5}{4}}}+c\]
(d) \[\dfrac{2}{5}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{5}{4}}}+c\]
Answer
573.6k+ views
Hint: We solve this problem by converting the integral part as power of some variable by assuming the variable as some function of \['x'\] that is
\[t=f\left( x \right)\]
Then we differentiate that assumption to get the value of \['dx'\] in terms of \['dt'\] so as to substitute in the given integral to get in the standard form that is \[\int{{{t}^{n}}dt}\]
We use the standard formula of integration that is
\[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using the above formula we get the required value of integral.
Complete step-by-step answer:
Let us assume that the given integral as
\[\Rightarrow I=\int{\dfrac{{{\left( {{x}^{4}}-x \right)}^{\dfrac{1}{4}}}}{{{x}^{5}}}dx}\]
Now by taking the common term out from the numerator and cancelling with denominator we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{{{\left( {{x}^{4}} \right)}^{\dfrac{1}{4}}}{{\left( 1-\dfrac{x}{{{x}^{4}}} \right)}^{\dfrac{1}{4}}}}{{{x}^{5}}}dx} \\
& \Rightarrow I=\int{\dfrac{{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{1}{4}}}}{{{x}^{4}}}dx}..........equation(i) \\
\end{align}\]
Now, let us assume that the value inside the bracket as some other variable that is
\[\Rightarrow t=1-\dfrac{1}{{{x}^{3}}}\]
Now, by differentiating with respect to \['x'\] on both sides we get
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{d}{dx}\left( 1 \right)-\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{3}}} \right)\]
We know that the standard formulas of differentiation as
\[\begin{align}
& \dfrac{d}{dx}\left( \text{constant} \right)=0 \\
& \dfrac{d}{dx}\left( {{x}^{n}} \right)=n.{{x}^{n-1}} \\
\end{align}\]
By using these formulas to above equation we get
\[\begin{align}
& \Rightarrow \dfrac{dt}{dx}=0-\left( -3.{{x}^{-3-1}} \right) \\
& \Rightarrow dt=\dfrac{3}{{{x}^{4}}}dx \\
& \Rightarrow \dfrac{1}{{{x}^{4}}}dx=\dfrac{dt}{3} \\
\end{align}\]
Now, by substituting the required values in equation (i) we get
\[\begin{align}
& \Rightarrow I=\int{{{\left( t \right)}^{\dfrac{1}{4}}}\left( \dfrac{dt}{3} \right)} \\
& \Rightarrow I=\dfrac{1}{3}\int{{{t}^{\dfrac{1}{4}}}dt} \\
\end{align}\]
We know that the standard formula of integration that is
\[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using this formula in above equation we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{3}\left( \dfrac{{{t}^{\dfrac{1}{4}+1}}}{\dfrac{1}{4}+1} \right)+c \\
& \Rightarrow I=\dfrac{1}{3}\left( \dfrac{4}{5}{{t}^{\dfrac{5}{4}}} \right) \\
& \Rightarrow I=\dfrac{4}{15}{{t}^{\dfrac{5}{4}}} \\
\end{align}\]
Now, by substituting the value of \['t'\] in terms of \['x'\] in above equation we get
\[\Rightarrow I=\dfrac{4}{15}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{5}{4}}}+c\]
Therefore the value of given integral is
\[\therefore \int{\dfrac{{{\left( {{x}^{4}}-x \right)}^{\dfrac{1}{4}}}}{{{x}^{5}}}dx}=\dfrac{4}{15}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{5}{4}}}+c\]
So, the correct answer is “Option C”.
Note: Students may make mistakes in converting the integral of \['x'\] to integral of some other variable.
We have the value of integration as
\[\Rightarrow I=\int{\dfrac{{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{1}{4}}}}{{{x}^{4}}}dx}\]
Then we assume that
\[\Rightarrow t=1-\dfrac{1}{{{x}^{3}}}\]
After this assumption we need to differentiate the above equation to get the value as
\[\Rightarrow \dfrac{1}{{{x}^{4}}}dx=\dfrac{dt}{3}\]
But, some students miss this differentiation and take the value as\[dx=dt\] which will be wrong. We need to differentiate the above equation to get \['dx'\] in terms of \['dt'\]
\[t=f\left( x \right)\]
Then we differentiate that assumption to get the value of \['dx'\] in terms of \['dt'\] so as to substitute in the given integral to get in the standard form that is \[\int{{{t}^{n}}dt}\]
We use the standard formula of integration that is
\[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using the above formula we get the required value of integral.
Complete step-by-step answer:
Let us assume that the given integral as
\[\Rightarrow I=\int{\dfrac{{{\left( {{x}^{4}}-x \right)}^{\dfrac{1}{4}}}}{{{x}^{5}}}dx}\]
Now by taking the common term out from the numerator and cancelling with denominator we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{{{\left( {{x}^{4}} \right)}^{\dfrac{1}{4}}}{{\left( 1-\dfrac{x}{{{x}^{4}}} \right)}^{\dfrac{1}{4}}}}{{{x}^{5}}}dx} \\
& \Rightarrow I=\int{\dfrac{{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{1}{4}}}}{{{x}^{4}}}dx}..........equation(i) \\
\end{align}\]
Now, let us assume that the value inside the bracket as some other variable that is
\[\Rightarrow t=1-\dfrac{1}{{{x}^{3}}}\]
Now, by differentiating with respect to \['x'\] on both sides we get
\[\Rightarrow \dfrac{dt}{dx}=\dfrac{d}{dx}\left( 1 \right)-\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{3}}} \right)\]
We know that the standard formulas of differentiation as
\[\begin{align}
& \dfrac{d}{dx}\left( \text{constant} \right)=0 \\
& \dfrac{d}{dx}\left( {{x}^{n}} \right)=n.{{x}^{n-1}} \\
\end{align}\]
By using these formulas to above equation we get
\[\begin{align}
& \Rightarrow \dfrac{dt}{dx}=0-\left( -3.{{x}^{-3-1}} \right) \\
& \Rightarrow dt=\dfrac{3}{{{x}^{4}}}dx \\
& \Rightarrow \dfrac{1}{{{x}^{4}}}dx=\dfrac{dt}{3} \\
\end{align}\]
Now, by substituting the required values in equation (i) we get
\[\begin{align}
& \Rightarrow I=\int{{{\left( t \right)}^{\dfrac{1}{4}}}\left( \dfrac{dt}{3} \right)} \\
& \Rightarrow I=\dfrac{1}{3}\int{{{t}^{\dfrac{1}{4}}}dt} \\
\end{align}\]
We know that the standard formula of integration that is
\[\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using this formula in above equation we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{3}\left( \dfrac{{{t}^{\dfrac{1}{4}+1}}}{\dfrac{1}{4}+1} \right)+c \\
& \Rightarrow I=\dfrac{1}{3}\left( \dfrac{4}{5}{{t}^{\dfrac{5}{4}}} \right) \\
& \Rightarrow I=\dfrac{4}{15}{{t}^{\dfrac{5}{4}}} \\
\end{align}\]
Now, by substituting the value of \['t'\] in terms of \['x'\] in above equation we get
\[\Rightarrow I=\dfrac{4}{15}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{5}{4}}}+c\]
Therefore the value of given integral is
\[\therefore \int{\dfrac{{{\left( {{x}^{4}}-x \right)}^{\dfrac{1}{4}}}}{{{x}^{5}}}dx}=\dfrac{4}{15}{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{5}{4}}}+c\]
So, the correct answer is “Option C”.
Note: Students may make mistakes in converting the integral of \['x'\] to integral of some other variable.
We have the value of integration as
\[\Rightarrow I=\int{\dfrac{{{\left( 1-\dfrac{1}{{{x}^{3}}} \right)}^{\dfrac{1}{4}}}}{{{x}^{4}}}dx}\]
Then we assume that
\[\Rightarrow t=1-\dfrac{1}{{{x}^{3}}}\]
After this assumption we need to differentiate the above equation to get the value as
\[\Rightarrow \dfrac{1}{{{x}^{4}}}dx=\dfrac{dt}{3}\]
But, some students miss this differentiation and take the value as\[dx=dt\] which will be wrong. We need to differentiate the above equation to get \['dx'\] in terms of \['dt'\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

