Answer
Verified
429.9k+ views
Hint: Before attempting this question, one should have prior knowledge about the matrix such as the addition two matrix is given as; $\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
p&q \\
r&s
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{a + p}&{b + q} \\
{c + r}&{d + s}
\end{array}} \right]$also remember to use trigonometric identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$to simplify the value of the given matrix.
Complete step-by-step answer:
According to the given information we have matrix
${\text{cos}}\theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
Further simplifying the matrix, we get
$\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta }&{{{\cos }^2}\theta }
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }&{ - \sin \theta \cos \theta } \\
{\sin \theta \cos \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$
Now we know that the addition of two matrix is given as; $\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
p&q \\
r&s
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{a + p}&{b + q} \\
{c + r}&{d + s}
\end{array}} \right]$
Therefore, $\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta + {{\sin }^2}\theta }&{\sin \theta \cos \theta - \sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta + \sin \theta \cos \theta }&{{{\cos }^2}\theta + {{\sin }^2}\theta }
\end{array}} \right]$
Since we know that by the trigonometric identity, ${\cos ^2}\theta + {\sin ^2}\theta = 1$
Therefore, using this identity in the above matrix we get
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
As we know that the square matrix where diagonal elements have value 1 and other than diagonal all elements are 0 this type of matrix is called identity matrix
So, we can say that the above matrix is an ${\text{2}} \times {\text{2}}$ identity matrix i.e. ${{\text{I}}_{2 \times 2}}$
therefore, ${\text{cos}}\theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$ = ${{\text{I}}_{2 \times 2}}$
So, this is the required solution.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
a&b \\
c&d
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
p&q \\
r&s
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{a + p}&{b + q} \\
{c + r}&{d + s}
\end{array}} \right]$also remember to use trigonometric identity ${\cos ^2}\theta + {\sin ^2}\theta = 1$to simplify the value of the given matrix.
Complete step-by-step answer:
According to the given information we have matrix
${\text{cos}}\theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$
Further simplifying the matrix, we get
$\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta }&{\sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta }&{{{\cos }^2}\theta }
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{{{\sin }^2}\theta }&{ - \sin \theta \cos \theta } \\
{\sin \theta \cos \theta }&{{{\sin }^2}\theta }
\end{array}} \right]$
Now we know that the addition of two matrix is given as; $\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
p&q \\
r&s
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{a + p}&{b + q} \\
{c + r}&{d + s}
\end{array}} \right]$
Therefore, $\left[ {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta + {{\sin }^2}\theta }&{\sin \theta \cos \theta - \sin \theta \cos \theta } \\
{ - \sin \theta \cos \theta + \sin \theta \cos \theta }&{{{\cos }^2}\theta + {{\sin }^2}\theta }
\end{array}} \right]$
Since we know that by the trigonometric identity, ${\cos ^2}\theta + {\sin ^2}\theta = 1$
Therefore, using this identity in the above matrix we get
$\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
As we know that the square matrix where diagonal elements have value 1 and other than diagonal all elements are 0 this type of matrix is called identity matrix
So, we can say that the above matrix is an ${\text{2}} \times {\text{2}}$ identity matrix i.e. ${{\text{I}}_{2 \times 2}}$
therefore, ${\text{cos}}\theta \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{\sin \theta } \\
{ - \sin \theta }&{\cos \theta }
\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}
{\sin \theta }&{ - \cos \theta } \\
{\cos \theta }&{\sin \theta }
\end{array}} \right]$ = ${{\text{I}}_{2 \times 2}}$
So, this is the required solution.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE