Answer
Verified
438.9k+ views
Hint:
We see that the given differential equation is the second order differential equation. It means that we differentiate the equation \[y = A\cos nx + B\sin nx\] two times to obtain the second order differential equations. The differentiation is a method of finding a function that generates the rate of change between one variable and another variable. In this equation \[y = A\cos nx + B\sin nx\], y is the dependent variable and x is the independent variable.
Complete step by step solution:
The equation given in the problem is as follows.
\[y = A\cos nx + B\sin nx\].
We can differentiate the above equation with respect to x by using Chain rule.
$\dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {A\cos nx + B\sin nx} \right)\\
\dfrac{{dy}}{{dx}} = - A\sin nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + B\cos nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - nA\sin nx + Bn\sin nx$
The required differential equation needs the second order of differential equation therefore, we will again differentiate the above equation with respect to x.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - An\cos nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + Bn\sin nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - {n^2}A\cos nx - B{n^2}\sin nx\\
= - {n^2}\left( {A\cos nx + B\sin nx} \right)$
We know that \[y = A\cos nx + B\sin nx\] which can be used in the above equation. So, substitute the value of \[\left( {A\cos nx + B\sin nx} \right)\] with y in the above expression.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {n^2}\left( y \right)\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$
Hence, the above result proves the required equation is \[\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0\]. Thus, it is proved that \[y = A\cos nx + B\sin nx\] is a solution of the differential equation: $\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$.
Additional Information:
A differential equation is like an equation of dependent terms differentiated to the different orders. There are a lot of ways of solving such types of equations.
Note:
Make sure to use proper chain rules while doing the differentiation. You should know the basic formula of the trigonometry such as the differential of \[\sin x\] is \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and the differential of \[\cos x\] is \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. Also don’t get confused with the process of differentiation and the process of the integration.
We see that the given differential equation is the second order differential equation. It means that we differentiate the equation \[y = A\cos nx + B\sin nx\] two times to obtain the second order differential equations. The differentiation is a method of finding a function that generates the rate of change between one variable and another variable. In this equation \[y = A\cos nx + B\sin nx\], y is the dependent variable and x is the independent variable.
Complete step by step solution:
The equation given in the problem is as follows.
\[y = A\cos nx + B\sin nx\].
We can differentiate the above equation with respect to x by using Chain rule.
$\dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {A\cos nx + B\sin nx} \right)\\
\dfrac{{dy}}{{dx}} = - A\sin nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + B\cos nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - nA\sin nx + Bn\sin nx$
The required differential equation needs the second order of differential equation therefore, we will again differentiate the above equation with respect to x.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - An\cos nx\left( {\dfrac{d}{{dx}}\left( {nx} \right)} \right) + Bn\sin nx\left( {\dfrac{d}{{dx}}nx} \right)\\
= - {n^2}A\cos nx - B{n^2}\sin nx\\
= - {n^2}\left( {A\cos nx + B\sin nx} \right)$
We know that \[y = A\cos nx + B\sin nx\] which can be used in the above equation. So, substitute the value of \[\left( {A\cos nx + B\sin nx} \right)\] with y in the above expression.
$\dfrac{{{d^2}y}}{{d{x^2}}} = - {n^2}\left( y \right)\\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$
Hence, the above result proves the required equation is \[\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0\]. Thus, it is proved that \[y = A\cos nx + B\sin nx\] is a solution of the differential equation: $\dfrac{{{d^2}y}}{{d{x^2}}} + {n^2}y = 0$.
Additional Information:
A differential equation is like an equation of dependent terms differentiated to the different orders. There are a lot of ways of solving such types of equations.
Note:
Make sure to use proper chain rules while doing the differentiation. You should know the basic formula of the trigonometry such as the differential of \[\sin x\] is \[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\] and the differential of \[\cos x\] is \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. Also don’t get confused with the process of differentiation and the process of the integration.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell