Answer
Verified
475.2k+ views
Hint: Here let’s ${\text{use the properties }}{{\text{a}}^{{{\log }_a}^n}} = n$, ${\text{lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},$ ${{\text{a}}^b}^{{{\log }_a}^n} = {a^{{{\log }_a}{n^b}}}$ and arrange the terms to find the value of x.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths