Show that x=2 is the only root of the equation
${9^{{{\log }_3}[{{\log }_2}x]}} = {\log _2}x - {({\log _2}x)^2} + 1$
Answer
380.1k+ views
Hint: Here let’s ${\text{use the properties }}{{\text{a}}^{{{\log }_a}^n}} = n$, ${\text{lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},$ ${{\text{a}}^b}^{{{\log }_a}^n} = {a^{{{\log }_a}{n^b}}}$ and arrange the terms to find the value of x.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Complete step-by-step answer:
Here we have
$
{\log _3}({\log _2}x){\text{ is defined only when lo}}{{\text{g}}_2}x = t(assumed){\text{ is + ve,i}}{\text{.e}}{\text{. , }}{\log _2}x > 0 = {2^1} \\
\therefore x > 1 \\
{\text{Also using the property }}{{\text{a}}^{{{\log }_a}^n}} = n \\
\Rightarrow {9^{{{\log }_3}t}} = {3^{2{{\log }_3}(t)}} = {3^{{{\log }_3}({t^2})}} = {t^2} \\
\therefore {t^2} = t - {t^2} + 1 \\
$
Now re - arranging the terms, we get
$
{\text{ 2}}{{\text{t}}^2} - t - 1 = 0{\text{ }} \\
$
Splitting the middle terms, we get
$
{\text{(2t + 1)(t - 1) = 0}} \\
\therefore t = 1{\text{ only (}}\dfrac{{ - 1}}{2}{\text{ rejected as it is + ve)}} \\
\therefore {\text{lo}}{{\text{g}}_2}x = 1 \\
{\text{using the property lo}}{{\text{g}}_a}x = b \Rightarrow x = {a^b},{\text{ we get}} \\
{\text{x = }}{{\text{2}}^1} = 2 \\
$
Thus there is only one root $2$.
Note: The properties used above are very important for other problems as well, and many more properties of logarithm functions are present. One must remember all the properties to know the approach towards the solution.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How many meters are there in a kilometer And how many class 8 maths CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

What were the major teachings of Baba Guru Nanak class 7 social science CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a labelled sketch of the human eye class 12 physics CBSE
