Show that the matrix $k{\text{A}}$ is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Answer
Verified
505.8k+ views
Hint- Here, we will be using the conditions for a matrix to be a symmetric or skew symmetric matrix.
Let A be a matrix and A’ be the transpose of the matrix A
So, matrix A is said to be symmetric matrix if ${\text{A = A'}}$ and matrix A is said to be skew symmetric matrix if ${\text{A}} = - {\text{A'}}$.
Let there be any matrix B such that ${\text{B}} = k{\text{A}}$ where $k$ is any constant.
Now for matrix B to be symmetric, \[{\text{B}} = {\text{B'}} \Rightarrow k{\text{A}} = \left( {k{\text{A}}} \right)'\]
Since for any constant $k$, \[\left( {k{\text{A}}} \right)' = k{\text{A'}} \Rightarrow k{\text{A}} = k{\text{A'}} \Rightarrow {\text{A}} = {\text{A'}}\] which is the condition for matrix A to be symmetric matrix i.e., for matrix ${\text{B}} = k{\text{A}}$ to be symmetric, matrix A should be a symmetric matrix
Now for matrix B to be skew symmetric, \[{\text{B}} = - {\text{B'}} \Rightarrow k{\text{A}} = - \left( {k{\text{A}}} \right)'\]
Since for any constant $k$, \[\left( {k{\text{A}}} \right)' = k{\text{A'}} \Rightarrow k{\text{A}} = - k{\text{A'}} \Rightarrow {\text{A}} = - {\text{A'}}\] which is the condition for matrix A to be skew symmetric matrix i.e., for matrix ${\text{B}} = k{\text{A}}$ to be skew symmetric, matrix A should be a skew symmetric matrix.
Therefore, matrix ${\text{B}} = k{\text{A}}$ is symmetric or skew symmetric according as matrix A is symmetric or skew symmetric.
Note- These types of problems can be solved by using the conditions for symmetric and skew symmetric matrices. The condition to be proved is to be simplified as much as possible
Let A be a matrix and A’ be the transpose of the matrix A
So, matrix A is said to be symmetric matrix if ${\text{A = A'}}$ and matrix A is said to be skew symmetric matrix if ${\text{A}} = - {\text{A'}}$.
Let there be any matrix B such that ${\text{B}} = k{\text{A}}$ where $k$ is any constant.
Now for matrix B to be symmetric, \[{\text{B}} = {\text{B'}} \Rightarrow k{\text{A}} = \left( {k{\text{A}}} \right)'\]
Since for any constant $k$, \[\left( {k{\text{A}}} \right)' = k{\text{A'}} \Rightarrow k{\text{A}} = k{\text{A'}} \Rightarrow {\text{A}} = {\text{A'}}\] which is the condition for matrix A to be symmetric matrix i.e., for matrix ${\text{B}} = k{\text{A}}$ to be symmetric, matrix A should be a symmetric matrix
Now for matrix B to be skew symmetric, \[{\text{B}} = - {\text{B'}} \Rightarrow k{\text{A}} = - \left( {k{\text{A}}} \right)'\]
Since for any constant $k$, \[\left( {k{\text{A}}} \right)' = k{\text{A'}} \Rightarrow k{\text{A}} = - k{\text{A'}} \Rightarrow {\text{A}} = - {\text{A'}}\] which is the condition for matrix A to be skew symmetric matrix i.e., for matrix ${\text{B}} = k{\text{A}}$ to be skew symmetric, matrix A should be a skew symmetric matrix.
Therefore, matrix ${\text{B}} = k{\text{A}}$ is symmetric or skew symmetric according as matrix A is symmetric or skew symmetric.
Note- These types of problems can be solved by using the conditions for symmetric and skew symmetric matrices. The condition to be proved is to be simplified as much as possible
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE