
Show that the line through points (1, -1, 2), (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).
Answer
605.1k+ views
Hint: First see the equation of line passing through the points or see the direction ratio of the lines of two lines through the points given above and then use the condition of two perpendicular lines. Use the concept of dot and cross product.
Complete step-by-step answer:
First let's name the points given, A= (1, -1, 2) and B = (3, 4, -2), C = (0, 3, 2) and D = (3, 5, 6)
Two lines with direction ratio \[{a_1},{b_1},{c_1}\] and \[{a_2},{b_2},{c_2}\] are said to be perpendicular to each other if
\[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\]………(1)
Direction ratio of the line passing through the points is given by \[({x_2} - {x_1}),({y_{_2}} - {y_1}),({z_2} - {z_1})\]
∴ Direction ratio of the line passing through the points A and B is
\[(3 - 1),(4 - ( - 1)),( - 2 - 2)\]
\[ \Rightarrow \]2, 5, -4
∴\[{a_1}\] = 2, \[{b_1}\] = 5, \[{c_1}\]=-4
Direction ratio of the line passing through the points C and D is
\[(3 - 0),(5 - 3),(6 - 2)\]
\[ \Rightarrow \]3, 2, 4
\[ \Rightarrow \]\[{a_2}\] = 3, \[{b_2}\] = 2, \[{c_2}\] = 4
Now using equation (1) we get
= (2×3) + (5×2) + (-4×-4)
=6 + 10 + (-16)
=16 – 16
= 0.
Since the equation (1) is satisfied which shows that the two lines passing through the above points are perpendicular to each other.
Note: This question can also be solved using the dot product, for which you first have to make these points into vector equations of two lines and then the dot product of the two lines which should be equal to 0 to show that they are perpendicular.
Complete step-by-step answer:
First let's name the points given, A= (1, -1, 2) and B = (3, 4, -2), C = (0, 3, 2) and D = (3, 5, 6)
Two lines with direction ratio \[{a_1},{b_1},{c_1}\] and \[{a_2},{b_2},{c_2}\] are said to be perpendicular to each other if
\[{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\]………(1)
Direction ratio of the line passing through the points is given by \[({x_2} - {x_1}),({y_{_2}} - {y_1}),({z_2} - {z_1})\]
∴ Direction ratio of the line passing through the points A and B is
\[(3 - 1),(4 - ( - 1)),( - 2 - 2)\]
\[ \Rightarrow \]2, 5, -4
∴\[{a_1}\] = 2, \[{b_1}\] = 5, \[{c_1}\]=-4
Direction ratio of the line passing through the points C and D is
\[(3 - 0),(5 - 3),(6 - 2)\]
\[ \Rightarrow \]3, 2, 4
\[ \Rightarrow \]\[{a_2}\] = 3, \[{b_2}\] = 2, \[{c_2}\] = 4
Now using equation (1) we get
= (2×3) + (5×2) + (-4×-4)
=6 + 10 + (-16)
=16 – 16
= 0.
Since the equation (1) is satisfied which shows that the two lines passing through the above points are perpendicular to each other.
Note: This question can also be solved using the dot product, for which you first have to make these points into vector equations of two lines and then the dot product of the two lines which should be equal to 0 to show that they are perpendicular.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

