Answer
Verified
392.1k+ views
Hint: Wave: It is a disturbance traveling through a medium, transporting the energy from one location to another location. Waves transport the energy without transporting the matter. Change in the direction of a wave is known as reflection. Waves are shown spectrum like radio waves, gamma waves, visible light etc.
Complete step-by-step solution:
Given,
Equation,
$y = a\sin (\omega t - kx)$ …(1)
$\dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$ …(2)
Differentiate the equation 1 w.r.t. time’t’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial t}} = a\omega \cos (\omega t - kx)$
Again differentiate w.r.t. ‘t’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = - a{\omega ^2}\sin (\omega t - kx)$ …(3)
Now differentiate the equation 1 w.r.t. ‘x’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial x}} = - ax\cos (\omega t - kx)$
Differentiate again w.r.t. ‘x’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {x^2}}} = - a{x^2}\sin (\omega t - kx)$ …(4)
Put the value in equation 2 from equation 3 and 4
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$
$ \Rightarrow - a{\omega ^2}\sin (\omega t - kx) = {v^2}( - a{x^2}\sin (\omega t - kx))$
$ \Rightarrow {\omega ^2} = {v^2}{x^2}$
\[ \Rightarrow {v^2} = {\left( {\dfrac{\omega }{x}} \right)^2}\]
\[ \Rightarrow v = \left( {\dfrac{\omega }{x}} \right)\]
The Waves travel in a positive direction.
Note: Speed of waves depends on the medium in which the wave travels. In denser medium waves travel slow as compared to lesser denser mediums. The velocity of the wave is equal to the product of wavelength and frequency (number of vibrations per second). And it is independent of intensity.
Complete step-by-step solution:
Given,
Equation,
$y = a\sin (\omega t - kx)$ …(1)
$\dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$ …(2)
Differentiate the equation 1 w.r.t. time’t’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial t}} = a\omega \cos (\omega t - kx)$
Again differentiate w.r.t. ‘t’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = - a{\omega ^2}\sin (\omega t - kx)$ …(3)
Now differentiate the equation 1 w.r.t. ‘x’
$ \Rightarrow y = a\sin (\omega t - kx)$
$ \Rightarrow \dfrac{{\partial y}}{{\partial x}} = - ax\cos (\omega t - kx)$
Differentiate again w.r.t. ‘x’
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {x^2}}} = - a{x^2}\sin (\omega t - kx)$ …(4)
Put the value in equation 2 from equation 3 and 4
$ \Rightarrow \dfrac{{{\partial ^2}y}}{{\partial {t^2}}} = {v^2}\dfrac{{{\partial ^2}y}}{{\partial {x^2}}}$
$ \Rightarrow - a{\omega ^2}\sin (\omega t - kx) = {v^2}( - a{x^2}\sin (\omega t - kx))$
$ \Rightarrow {\omega ^2} = {v^2}{x^2}$
\[ \Rightarrow {v^2} = {\left( {\dfrac{\omega }{x}} \right)^2}\]
\[ \Rightarrow v = \left( {\dfrac{\omega }{x}} \right)\]
The Waves travel in a positive direction.
Note: Speed of waves depends on the medium in which the wave travels. In denser medium waves travel slow as compared to lesser denser mediums. The velocity of the wave is equal to the product of wavelength and frequency (number of vibrations per second). And it is independent of intensity.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE