
Show that \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\] and justify why the other value \[\dfrac{{4 + \sqrt 7 }}{3}\] is ignored?
Answer
431.4k+ views
Hint: Here, in the question, we have been given an equation and asked to prove that the left hand side of this equation is equal to the right hand side of the equation. While we will go through the solution we will get two values and one of them would be ignored, so we have to state the reason. We will start taking LHS and then simplify it using applicable identities and reach the RHS.
Formulae used:
The roots of the Quadratic equation \[a{x^2} + bx + c = 0\] is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Complete step-by-step solution:
We have to prove \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Firstly, Let’s assume \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \]
\[ \Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta \]
Taking \[\sin \] both sides, we get,
\[\sin \left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \sin 2\theta \]
Using the property \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \], we get,
\[\dfrac{3}{4} = \sin 2\theta \]
Now, using the identity\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\], we get,
\[\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}\]
Solving it further, we get
\[
8\tan \theta = 3 + 3{\tan ^2}\theta \\
\Rightarrow 3{\tan ^2}\theta - 8\tan \theta + 3 = 0 \]
Now, let’s assume \[\tan \theta = z\]
\[\therefore 3{z^2} - 8z + 3 = 0\]
Using the Discriminant method to solve for the value of \[z\], we get,
\[z = \dfrac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}\]
Now, the simplest form of \[z\] can be calculated as
\[
z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} \]
Now putting back the value \[\tan \theta = z\], we get
\[\tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}\]
Now, looking at the range of \[{\sin ^{ - 1}}x\], we obtain,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}\]
Dividing this equation by 2, we get
\[ - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}\]
Now, Putting the value of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[ - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}\]
Taking \[\tan \]in this equation
\[\tan \left( { - \dfrac{\pi }{4}} \right) \leqslant \tan \left( \theta \right) \leqslant \tan \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow - 1 \leqslant \tan \theta \leqslant 1 \]
We can see that the value of \[\tan \theta \] must be less than or equal to \[1\] only.
But \[\dfrac{{4 + \sqrt 7 }}{3} > 1\], Hence, we will ignore this value
\[ \Rightarrow \tan \theta = \dfrac{{4 - \sqrt 7 }}{3}\]
Now, putting the values of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Hence, we have proved \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Note: The symbol \[{\sin ^{ - 1}}\theta \] should not be confused with \[{\left( {\sin \theta } \right)^{ - 1}}\]. Infact \[{\sin ^{ - 1}}\theta \] is an angle, the value of whose sine is \[\theta \], similarly for other trigonometric functions.
The smallest numerical value of \[\theta \], either positive or negative, is known as the Principal Value of the function. The principal value of inverse of sine function must lie between \[\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\].
Formulae used:
The roots of the Quadratic equation \[a{x^2} + bx + c = 0\] is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Complete step-by-step solution:
We have to prove \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Firstly, Let’s assume \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \]
\[ \Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta \]
Taking \[\sin \] both sides, we get,
\[\sin \left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \sin 2\theta \]
Using the property \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \], we get,
\[\dfrac{3}{4} = \sin 2\theta \]
Now, using the identity\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\], we get,
\[\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}\]
Solving it further, we get
\[
8\tan \theta = 3 + 3{\tan ^2}\theta \\
\Rightarrow 3{\tan ^2}\theta - 8\tan \theta + 3 = 0 \]
Now, let’s assume \[\tan \theta = z\]
\[\therefore 3{z^2} - 8z + 3 = 0\]
Using the Discriminant method to solve for the value of \[z\], we get,
\[z = \dfrac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}\]
Now, the simplest form of \[z\] can be calculated as
\[
z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} \]
Now putting back the value \[\tan \theta = z\], we get
\[\tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}\]
Now, looking at the range of \[{\sin ^{ - 1}}x\], we obtain,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}\]
Dividing this equation by 2, we get
\[ - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}\]
Now, Putting the value of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[ - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}\]
Taking \[\tan \]in this equation
\[\tan \left( { - \dfrac{\pi }{4}} \right) \leqslant \tan \left( \theta \right) \leqslant \tan \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow - 1 \leqslant \tan \theta \leqslant 1 \]
We can see that the value of \[\tan \theta \] must be less than or equal to \[1\] only.
But \[\dfrac{{4 + \sqrt 7 }}{3} > 1\], Hence, we will ignore this value
\[ \Rightarrow \tan \theta = \dfrac{{4 - \sqrt 7 }}{3}\]
Now, putting the values of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Hence, we have proved \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Note: The symbol \[{\sin ^{ - 1}}\theta \] should not be confused with \[{\left( {\sin \theta } \right)^{ - 1}}\]. Infact \[{\sin ^{ - 1}}\theta \] is an angle, the value of whose sine is \[\theta \], similarly for other trigonometric functions.
The smallest numerical value of \[\theta \], either positive or negative, is known as the Principal Value of the function. The principal value of inverse of sine function must lie between \[\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\].
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
