
Show that \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\] and justify why the other value \[\dfrac{{4 + \sqrt 7 }}{3}\] is ignored?
Answer
507.3k+ views
Hint: Here, in the question, we have been given an equation and asked to prove that the left hand side of this equation is equal to the right hand side of the equation. While we will go through the solution we will get two values and one of them would be ignored, so we have to state the reason. We will start taking LHS and then simplify it using applicable identities and reach the RHS.
Formulae used:
The roots of the Quadratic equation \[a{x^2} + bx + c = 0\] is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Complete step-by-step solution:
We have to prove \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Firstly, Let’s assume \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \]
\[ \Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta \]
Taking \[\sin \] both sides, we get,
\[\sin \left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \sin 2\theta \]
Using the property \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \], we get,
\[\dfrac{3}{4} = \sin 2\theta \]
Now, using the identity\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\], we get,
\[\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}\]
Solving it further, we get
\[
8\tan \theta = 3 + 3{\tan ^2}\theta \\
\Rightarrow 3{\tan ^2}\theta - 8\tan \theta + 3 = 0 \]
Now, let’s assume \[\tan \theta = z\]
\[\therefore 3{z^2} - 8z + 3 = 0\]
Using the Discriminant method to solve for the value of \[z\], we get,
\[z = \dfrac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}\]
Now, the simplest form of \[z\] can be calculated as
\[
z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} \]
Now putting back the value \[\tan \theta = z\], we get
\[\tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}\]
Now, looking at the range of \[{\sin ^{ - 1}}x\], we obtain,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}\]
Dividing this equation by 2, we get
\[ - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}\]
Now, Putting the value of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[ - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}\]
Taking \[\tan \]in this equation
\[\tan \left( { - \dfrac{\pi }{4}} \right) \leqslant \tan \left( \theta \right) \leqslant \tan \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow - 1 \leqslant \tan \theta \leqslant 1 \]
We can see that the value of \[\tan \theta \] must be less than or equal to \[1\] only.
But \[\dfrac{{4 + \sqrt 7 }}{3} > 1\], Hence, we will ignore this value
\[ \Rightarrow \tan \theta = \dfrac{{4 - \sqrt 7 }}{3}\]
Now, putting the values of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Hence, we have proved \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Note: The symbol \[{\sin ^{ - 1}}\theta \] should not be confused with \[{\left( {\sin \theta } \right)^{ - 1}}\]. Infact \[{\sin ^{ - 1}}\theta \] is an angle, the value of whose sine is \[\theta \], similarly for other trigonometric functions.
The smallest numerical value of \[\theta \], either positive or negative, is known as the Principal Value of the function. The principal value of inverse of sine function must lie between \[\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\].
Formulae used:
The roots of the Quadratic equation \[a{x^2} + bx + c = 0\] is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Complete step-by-step solution:
We have to prove \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Firstly, Let’s assume \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \]
\[ \Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta \]
Taking \[\sin \] both sides, we get,
\[\sin \left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \sin 2\theta \]
Using the property \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \], we get,
\[\dfrac{3}{4} = \sin 2\theta \]
Now, using the identity\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\], we get,
\[\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}\]
Solving it further, we get
\[
8\tan \theta = 3 + 3{\tan ^2}\theta \\
\Rightarrow 3{\tan ^2}\theta - 8\tan \theta + 3 = 0 \]
Now, let’s assume \[\tan \theta = z\]
\[\therefore 3{z^2} - 8z + 3 = 0\]
Using the Discriminant method to solve for the value of \[z\], we get,
\[z = \dfrac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}\]
Now, the simplest form of \[z\] can be calculated as
\[
z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} \]
Now putting back the value \[\tan \theta = z\], we get
\[\tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}\]
Now, looking at the range of \[{\sin ^{ - 1}}x\], we obtain,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}\]
Dividing this equation by 2, we get
\[ - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}\]
Now, Putting the value of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[ - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}\]
Taking \[\tan \]in this equation
\[\tan \left( { - \dfrac{\pi }{4}} \right) \leqslant \tan \left( \theta \right) \leqslant \tan \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow - 1 \leqslant \tan \theta \leqslant 1 \]
We can see that the value of \[\tan \theta \] must be less than or equal to \[1\] only.
But \[\dfrac{{4 + \sqrt 7 }}{3} > 1\], Hence, we will ignore this value
\[ \Rightarrow \tan \theta = \dfrac{{4 - \sqrt 7 }}{3}\]
Now, putting the values of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Hence, we have proved \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Note: The symbol \[{\sin ^{ - 1}}\theta \] should not be confused with \[{\left( {\sin \theta } \right)^{ - 1}}\]. Infact \[{\sin ^{ - 1}}\theta \] is an angle, the value of whose sine is \[\theta \], similarly for other trigonometric functions.
The smallest numerical value of \[\theta \], either positive or negative, is known as the Principal Value of the function. The principal value of inverse of sine function must lie between \[\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\].
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

