Answer
Verified
383.4k+ views
Hint: Here, in the question, we have been given an equation and asked to prove that the left hand side of this equation is equal to the right hand side of the equation. While we will go through the solution we will get two values and one of them would be ignored, so we have to state the reason. We will start taking LHS and then simplify it using applicable identities and reach the RHS.
Formulae used:
The roots of the Quadratic equation \[a{x^2} + bx + c = 0\] is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Complete step-by-step solution:
We have to prove \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Firstly, Let’s assume \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \]
\[ \Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta \]
Taking \[\sin \] both sides, we get,
\[\sin \left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \sin 2\theta \]
Using the property \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \], we get,
\[\dfrac{3}{4} = \sin 2\theta \]
Now, using the identity\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\], we get,
\[\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}\]
Solving it further, we get
\[
8\tan \theta = 3 + 3{\tan ^2}\theta \\
\Rightarrow 3{\tan ^2}\theta - 8\tan \theta + 3 = 0 \]
Now, let’s assume \[\tan \theta = z\]
\[\therefore 3{z^2} - 8z + 3 = 0\]
Using the Discriminant method to solve for the value of \[z\], we get,
\[z = \dfrac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}\]
Now, the simplest form of \[z\] can be calculated as
\[
z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} \]
Now putting back the value \[\tan \theta = z\], we get
\[\tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}\]
Now, looking at the range of \[{\sin ^{ - 1}}x\], we obtain,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}\]
Dividing this equation by 2, we get
\[ - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}\]
Now, Putting the value of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[ - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}\]
Taking \[\tan \]in this equation
\[\tan \left( { - \dfrac{\pi }{4}} \right) \leqslant \tan \left( \theta \right) \leqslant \tan \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow - 1 \leqslant \tan \theta \leqslant 1 \]
We can see that the value of \[\tan \theta \] must be less than or equal to \[1\] only.
But \[\dfrac{{4 + \sqrt 7 }}{3} > 1\], Hence, we will ignore this value
\[ \Rightarrow \tan \theta = \dfrac{{4 - \sqrt 7 }}{3}\]
Now, putting the values of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Hence, we have proved \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Note: The symbol \[{\sin ^{ - 1}}\theta \] should not be confused with \[{\left( {\sin \theta } \right)^{ - 1}}\]. Infact \[{\sin ^{ - 1}}\theta \] is an angle, the value of whose sine is \[\theta \], similarly for other trigonometric functions.
The smallest numerical value of \[\theta \], either positive or negative, is known as the Principal Value of the function. The principal value of inverse of sine function must lie between \[\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\].
Formulae used:
The roots of the Quadratic equation \[a{x^2} + bx + c = 0\] is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\]
Complete step-by-step solution:
We have to prove \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Firstly, Let’s assume \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \]
\[ \Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta \]
Taking \[\sin \] both sides, we get,
\[\sin \left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \sin 2\theta \]
Using the property \[\sin \left( {{{\sin }^{ - 1}}\theta } \right) = \theta \], we get,
\[\dfrac{3}{4} = \sin 2\theta \]
Now, using the identity\[\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}\], we get,
\[\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}\]
Solving it further, we get
\[
8\tan \theta = 3 + 3{\tan ^2}\theta \\
\Rightarrow 3{\tan ^2}\theta - 8\tan \theta + 3 = 0 \]
Now, let’s assume \[\tan \theta = z\]
\[\therefore 3{z^2} - 8z + 3 = 0\]
Using the Discriminant method to solve for the value of \[z\], we get,
\[z = \dfrac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4\left( 3 \right)\left( 3 \right)} }}{{2\left( 3 \right)}}\]
Now, the simplest form of \[z\] can be calculated as
\[
z = \dfrac{{8 \pm \sqrt {28} }}{6} \\
\Rightarrow z = \dfrac{{4 \pm \sqrt 7 }}{3} \]
Now putting back the value \[\tan \theta = z\], we get
\[\tan \theta = \dfrac{{4 \pm \sqrt 7 }}{3}\]
Now, looking at the range of \[{\sin ^{ - 1}}x\], we obtain,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}\]
Dividing this equation by 2, we get
\[ - \dfrac{\pi }{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{4}\]
Now, Putting the value of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[ - \dfrac{\pi }{4} \leqslant \theta \leqslant \dfrac{\pi }{4}\]
Taking \[\tan \]in this equation
\[\tan \left( { - \dfrac{\pi }{4}} \right) \leqslant \tan \left( \theta \right) \leqslant \tan \left( {\dfrac{\pi }{4}} \right) \\
\Rightarrow - 1 \leqslant \tan \theta \leqslant 1 \]
We can see that the value of \[\tan \theta \] must be less than or equal to \[1\] only.
But \[\dfrac{{4 + \sqrt 7 }}{3} > 1\], Hence, we will ignore this value
\[ \Rightarrow \tan \theta = \dfrac{{4 - \sqrt 7 }}{3}\]
Now, putting the values of \[\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta \], we get
\[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Hence, we have proved \[\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}\]
Note: The symbol \[{\sin ^{ - 1}}\theta \] should not be confused with \[{\left( {\sin \theta } \right)^{ - 1}}\]. Infact \[{\sin ^{ - 1}}\theta \] is an angle, the value of whose sine is \[\theta \], similarly for other trigonometric functions.
The smallest numerical value of \[\theta \], either positive or negative, is known as the Principal Value of the function. The principal value of inverse of sine function must lie between \[\left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]\].
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell