
Show that $ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc $ .
Answer
410.4k+ views
Hint: We first use the row and column operations to simplify the determinant values. We take $ a+b+c $ as the common component from the same row. Then we expand the determinant to find the final value. We use formula of \[\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\].
Complete step-by-step answer:
We need to show that the determinant value will be equal to $ {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc $ .
We can apply row operations on the determinant value without changing the initial form.
So, we take the form of $ {{R}_{1}}^{'}={{R}_{1}}+{{R}_{3}} $ .
We get $ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a+b+c & b+c+a & a+b+c \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right| $ .
We take common the term $ a+b+c $ from the first row.
$ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left( a+b+c \right)\left| \begin{matrix}
1 & 1 & 1 \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right| $
Now we simplify further by taking the operations like $ {{C}_{2}}^{'}={{C}_{2}}-{{C}_{1}} $ and $ {{C}_{3}}^{'}={{C}_{3}}-{{C}_{1}} $ .
We get $ \left( a+b+c \right)\left| \begin{matrix}
1 & 1 & 1 \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left( a+b+c \right)\left| \begin{matrix}
1 & 0 & 0 \\
a+b & c-a & c-b \\
a & b-a & c-a \\
\end{matrix} \right| $
Now we expand the determinant value through the first row.
So, $ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left( a+b+c \right)\left[ {{\left( c-a \right)}^{2}}-\left( c-b \right)\left( b-a \right) \right] $ .
We simplify the expression and get
\[\begin{align}
& \left( a+b+c \right)\left[ {{\left( c-a \right)}^{2}}-\left( c-b \right)\left( b-a \right) \right] \\
& =\left( a+b+c \right)\left( {{c}^{2}}+{{a}^{2}}-2ac-bc+ac+{{b}^{2}}-ab \right) \\
& =\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right) \\
\end{align}\]
We also know that \[\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\].
Therefore, $ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc $ .
Note: There are certain operations which we can apply for the problems. We can switch two rows or columns which causes the determinant to switch sign. We can add a multiple of one row to another which causes the determinant to remain the same. We can multiply a row as a constant result in the determinant scaling by that constant.
Complete step-by-step answer:
We need to show that the determinant value will be equal to $ {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc $ .
We can apply row operations on the determinant value without changing the initial form.
So, we take the form of $ {{R}_{1}}^{'}={{R}_{1}}+{{R}_{3}} $ .
We get $ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a+b+c & b+c+a & a+b+c \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right| $ .
We take common the term $ a+b+c $ from the first row.
$ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left( a+b+c \right)\left| \begin{matrix}
1 & 1 & 1 \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right| $
Now we simplify further by taking the operations like $ {{C}_{2}}^{'}={{C}_{2}}-{{C}_{1}} $ and $ {{C}_{3}}^{'}={{C}_{3}}-{{C}_{1}} $ .
We get $ \left( a+b+c \right)\left| \begin{matrix}
1 & 1 & 1 \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left( a+b+c \right)\left| \begin{matrix}
1 & 0 & 0 \\
a+b & c-a & c-b \\
a & b-a & c-a \\
\end{matrix} \right| $
Now we expand the determinant value through the first row.
So, $ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|=\left( a+b+c \right)\left[ {{\left( c-a \right)}^{2}}-\left( c-b \right)\left( b-a \right) \right] $ .
We simplify the expression and get
\[\begin{align}
& \left( a+b+c \right)\left[ {{\left( c-a \right)}^{2}}-\left( c-b \right)\left( b-a \right) \right] \\
& =\left( a+b+c \right)\left( {{c}^{2}}+{{a}^{2}}-2ac-bc+ac+{{b}^{2}}-ab \right) \\
& =\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right) \\
\end{align}\]
We also know that \[\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \right)={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc\].
Therefore, $ \left| \begin{matrix}
b+c & c+a & a+b \\
a+b & b+c & c+a \\
a & b & c \\
\end{matrix} \right|={{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc $ .
Note: There are certain operations which we can apply for the problems. We can switch two rows or columns which causes the determinant to switch sign. We can add a multiple of one row to another which causes the determinant to remain the same. We can multiply a row as a constant result in the determinant scaling by that constant.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
