Show that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Answer
282.3k+ views
Hint: We must perform the following two column operations, ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$ and ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Then, by using the expansion formulae ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$, we can simplify the determinant to prove that it is equal to the given expression.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
