Answer
Verified
392.1k+ views
Hint: We must perform the following two column operations, ${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$ and ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Then, by using the expansion formulae ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$, we can simplify the determinant to prove that it is equal to the given expression.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Complete step-by-step solution:
Let us assume a variable D that is equal to the given determinant, that is,
$D=\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|$
We also know that we can perform any row or column operation, without changing the value of determinant.
So, let us perform the column operation${{C}_{2}}\to {{C}_{2}}-{{C}_{3}}$. We now get,
\[D=\left| \begin{matrix}
1 & 0 & 1 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}} \\
\end{matrix} \right|\]
Now, let us perform another column operation ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$. Thus, we will get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & {{y}^{2}}-{{z}^{2}} & {{z}^{2}}-{{x}^{2}} \\
{{x}^{3}} & {{y}^{3}}-{{z}^{3}} & {{z}^{3}}-{{x}^{3}} \\
\end{matrix} \right|\]
We know the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can easily write
\[{{y}^{2}}-{{z}^{2}}=\left( y+z \right)\left( y-z \right)\] and \[{{z}^{2}}-{{x}^{2}}=\left( z+x \right)\left( z-x \right)\].
We are also well aware about the expansion formula ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Hence, we can write \[{{y}^{3}}-{{z}^{3}}=\left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right)\] and \[{{z}^{3}}-{{x}^{3}}=\left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)\].
We can now substitute the value of all these expansions into the determinant. Thus, we get
\[D=\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right)\left( y-z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( y-z \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
We know that we can factor out the common terms from all the elements of a row or all the elements of a column.
We can see that the term $\left( y-z \right)$ can be taken as common from column 2. So, we get
\[D=\left( y-z \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right)\left( z-x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( z-x \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Also, we can see that the term $\left( z-x \right)$ can be taken as common from column 3. Hence, we get
\[D=\left( y-z \right)\left( z-x \right)\left| \begin{matrix}
1 & 0 & 0 \\
{{x}^{2}} & \left( y+z \right) & \left( z+x \right) \\
{{x}^{3}} & \left( {{y}^{2}}+{{z}^{2}}+yz \right) & \left( {{z}^{2}}+{{x}^{2}}+xz \right) \\
\end{matrix} \right|\]
Let us now solve the determinant. We can write
$D=\left( y-z \right)\left( z-x \right)\left[ 1\left\{ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right\}-0+0 \right]$
Thus, we get
$D=\left( y-z \right)\left( z-x \right)\left[ \left( y+z \right)\left( {{z}^{2}}+{{x}^{2}}+xz \right)-\left( z+x \right)\left( {{y}^{2}}+{{z}^{2}}+yz \right) \right]$
We can multiply the expressions to get
$D=\left( y-z \right)\left( z-x \right)\left[ y{{z}^{2}}+{{x}^{2}}y+xyz+{{z}^{3}}+{{x}^{2}}z+x{{z}^{2}}-{{y}^{2}}z-{{z}^{3}}-y{{z}^{2}}-x{{y}^{2}}-x{{z}^{2}}-xyz \right]$
On simplification and cancelling the terms, we get
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y+{{x}^{2}}z-{{y}^{2}}z-x{{y}^{2}} \right]$
We can rearrange these terms as follows,
$D=\left( y-z \right)\left( z-x \right)\left[ {{x}^{2}}y-x{{y}^{2}}+{{x}^{2}}z-{{y}^{2}}z \right]$
Thus, we can write
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( {{x}^{2}}-{{y}^{2}} \right) \right]$
Again, using the expansion formula, we get
$D=\left( y-z \right)\left( z-x \right)\left[ xy\left( x-y \right)+z\left( x+y \right)\left( x-y \right) \right]$
Hence, we get
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left[ xy+z\left( x+y \right) \right]$
Or, we can write this as
$D=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$
Hence, we have proved that $\left| \begin{matrix}
1 & 1 & 1 \\
{{x}^{2}} & {{y}^{2}} & {{z}^{2}} \\
{{x}^{3}} & {{y}^{3}} & {{z}^{3}} \\
\end{matrix} \right|=\left( x-y \right)\left( y-z \right)\left( z-x \right)\left( xy+yz+zx \right)$.
Note: We must note the difference in the symbols of determinant and matrix. We also know that when we take something as common from a matrix, is taken from each and every element of that matrix. But, in case of determinant, the common is taken only from a row or column.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE