
Show that \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\].
Answer
622.8k+ views
Hint: To prove that the given statement is correct, use induction on \[n\]. Check the validity of the statement for \[n=1\] and then assuming that the statement holds for \[n=k\], prove the statement for \[n=k+1\].
We have the statement that \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\]. We have to prove this statement. We will do so by using induction on \[n\]. We will check the validity of the given statement for \[n=1\] and then assuming that the statement holds for \[n=k\], we will prove the statement for \[n=k+1\] .
Thus, substituting \[n=1\] in the equation \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\], we get\[{{3}^{2+5}}+160\left( 1 \right)-56\left( 1 \right)-243={{3}^{7}}+160-56-243=2187-139=2048\].
We observe that \[\dfrac{2048}{512}=4\].
Hence, we observe that the statement \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\] holds for \[n=1\].
We will now prove the statement for \[n=k+1\], assuming that the statement holds for \[n=k\].
As the given statement holds for \[n=k\], we will replace \[n\] by \[k\] in the statement that \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\].
Replacing \[n\] by \[k\], we get \[{{3}^{2k+5}}+160{{k}^{2}}-56k-243\] is divisible by \[512\].
As \[{{3}^{2k+5}}+160{{k}^{2}}-56k-243\] is divisible by \[512\], we can write it as \[{{3}^{2k+5}}+160{{k}^{2}}-56k-243=512a\], where \[a\] represents some integer.
We will now prove that the statement holds for \[n=k+1\].
Substituting \[n=k+1\]in the expression \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\], we get \[{{3}^{2\left( k+1 \right)+5}}+160{{\left( k+1 \right)}^{2}}-56\left( k+1 \right)-243\].
Simplifying the above expression, we have \[{{3}^{2k+5}}\times 9+160\left( {{k}^{2}}+2k+1 \right)-56k-56-243\].
\[\begin{align}
& \Rightarrow {{3}^{2k+5}}\left( 1+8 \right)+160{{k}^{2}}+160+320k-56k-56-243 \\
& \Rightarrow \left( {{3}^{2k+5}}+160{{k}^{2}}-56k-243 \right)+\left( 8\times {{3}^{2k+5}}+160+320k-56 \right) \\
& \Rightarrow 512a+8\times {{3}^{2k+5}}+104+320k \\
& \Rightarrow 512a+8\left( {{3}^{2k+5}}+40k+13 \right) \\
\end{align}\]
Adding and subtracting the term \[8\left( 160{{k}^{2}}-56k-243 \right)\] from the above expression, we have \[512a+8\left( {{3}^{2k+5}}+160{{k}^{2}}-56k-243-160{{k}^{2}}+56k+243+40k+13 \right)\].
\[\begin{align}
& \Rightarrow 512a+8\left( {{3}^{2k+5}}+160{{k}^{2}}-56k-243 \right)+8\left( -160{{k}^{2}}+96k+256 \right) \\
& \Rightarrow 512a+8\left( 512a \right)-8\times 32\left( 5{{k}^{2}}-3k-8 \right) \\
& \Rightarrow 512b-256\left( 5{{k}^{2}}-3k-8 \right) \\
\end{align}\]
If we substitute \[k=1\] in the above expression, we get \[512b-256\left( -6 \right)=512\left( b+3 \right)=512c\] where \[b\] and \[c\] are some integers.
Thus, we observe that we can write \[512b-256\left( 5{{k}^{2}}-3k-8 \right)=512c\] for integer \[c\].
Hence, we have \[{{3}^{2\left( k+1 \right)+5}}+160{{\left( k+1 \right)}^{2}}-56\left( k+1 \right)-243=512c\] thus, proving that the given statement is true.
Thus, the statement \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\] holds for all \[n\].
Note: We can also prove this statement by using induction in another way by assuming that the given statement holds for \[n-1\] and then proving it for \[n\].
We have the statement that \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\]. We have to prove this statement. We will do so by using induction on \[n\]. We will check the validity of the given statement for \[n=1\] and then assuming that the statement holds for \[n=k\], we will prove the statement for \[n=k+1\] .
Thus, substituting \[n=1\] in the equation \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\], we get\[{{3}^{2+5}}+160\left( 1 \right)-56\left( 1 \right)-243={{3}^{7}}+160-56-243=2187-139=2048\].
We observe that \[\dfrac{2048}{512}=4\].
Hence, we observe that the statement \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\] holds for \[n=1\].
We will now prove the statement for \[n=k+1\], assuming that the statement holds for \[n=k\].
As the given statement holds for \[n=k\], we will replace \[n\] by \[k\] in the statement that \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\].
Replacing \[n\] by \[k\], we get \[{{3}^{2k+5}}+160{{k}^{2}}-56k-243\] is divisible by \[512\].
As \[{{3}^{2k+5}}+160{{k}^{2}}-56k-243\] is divisible by \[512\], we can write it as \[{{3}^{2k+5}}+160{{k}^{2}}-56k-243=512a\], where \[a\] represents some integer.
We will now prove that the statement holds for \[n=k+1\].
Substituting \[n=k+1\]in the expression \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\], we get \[{{3}^{2\left( k+1 \right)+5}}+160{{\left( k+1 \right)}^{2}}-56\left( k+1 \right)-243\].
Simplifying the above expression, we have \[{{3}^{2k+5}}\times 9+160\left( {{k}^{2}}+2k+1 \right)-56k-56-243\].
\[\begin{align}
& \Rightarrow {{3}^{2k+5}}\left( 1+8 \right)+160{{k}^{2}}+160+320k-56k-56-243 \\
& \Rightarrow \left( {{3}^{2k+5}}+160{{k}^{2}}-56k-243 \right)+\left( 8\times {{3}^{2k+5}}+160+320k-56 \right) \\
& \Rightarrow 512a+8\times {{3}^{2k+5}}+104+320k \\
& \Rightarrow 512a+8\left( {{3}^{2k+5}}+40k+13 \right) \\
\end{align}\]
Adding and subtracting the term \[8\left( 160{{k}^{2}}-56k-243 \right)\] from the above expression, we have \[512a+8\left( {{3}^{2k+5}}+160{{k}^{2}}-56k-243-160{{k}^{2}}+56k+243+40k+13 \right)\].
\[\begin{align}
& \Rightarrow 512a+8\left( {{3}^{2k+5}}+160{{k}^{2}}-56k-243 \right)+8\left( -160{{k}^{2}}+96k+256 \right) \\
& \Rightarrow 512a+8\left( 512a \right)-8\times 32\left( 5{{k}^{2}}-3k-8 \right) \\
& \Rightarrow 512b-256\left( 5{{k}^{2}}-3k-8 \right) \\
\end{align}\]
If we substitute \[k=1\] in the above expression, we get \[512b-256\left( -6 \right)=512\left( b+3 \right)=512c\] where \[b\] and \[c\] are some integers.
Thus, we observe that we can write \[512b-256\left( 5{{k}^{2}}-3k-8 \right)=512c\] for integer \[c\].
Hence, we have \[{{3}^{2\left( k+1 \right)+5}}+160{{\left( k+1 \right)}^{2}}-56\left( k+1 \right)-243=512c\] thus, proving that the given statement is true.
Thus, the statement \[{{3}^{2n+5}}+160{{n}^{2}}-56n-243\] is divisible by \[512\] holds for all \[n\].
Note: We can also prove this statement by using induction in another way by assuming that the given statement holds for \[n-1\] and then proving it for \[n\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

