
Seven athletes are participating in a race In how many ways can the first three athletes win the prices?
Answer
583.5k+ views
Hint: The total no. of ways for first 3 prizes can be won is the no. of arrangements of seven athletes to 3 prizes at a time, which is ordered pair is, take the permutation \[{}^n{P_r}\].
Complete step-by-step answer:
It is given that 7 athletes are participating in a race. Thus we can say that total no. of participants = 7.
Now we need to find the no. of ways the first three athletes win the prize. The total no. of ways in which first three prizes can be won is the number of arrangements of seven different things taken 3 at a time. We can solve this using permutation.
Thus we can say that the required no of ways = \[{}^7{P_3}\] where n=7 and r=3.
Thus by applying the formula of permutation wean say,
\[{}^7{P_3}{\rm{ = }}\dfrac{{7!}}{{(7 - 3)!}}\]
\[\begin{array}{l}{\rm{ = }}\dfrac{{7!}}{{4!}}{\rm{ = }}\dfrac{{7{\rm{ x 6 x 5 x 4!}}}}{{4!}}\\{}^7{P_3}{\rm{ = 7 x 6 x 5 = 210}}\end{array}\]
Hence, there are 210 ways in which the first three athletes win the prize.
Note: If it was asked to find no. of ways in which any three athletes win the prize, then we take combination\[\begin{array}{l}{}^n{C_r}{\rm{ = }}\dfrac{{n!}}{{(n - r)!{\rm{ r!}}}}\\{}^7{C_3}{\rm{ = }}\dfrac{{7!}}{{(7 - 3)!{\rm{ 3!}}}}{\rm{ = }}\dfrac{{7!}}{{4!3!}}{\rm{ = }}\dfrac{{7{\rm{ x 6 x 5}}}}{{3{\rm{ x 2}}}}{\rm{ = 35 ways}}{\rm{.}}\end{array}\]
Complete step-by-step answer:
It is given that 7 athletes are participating in a race. Thus we can say that total no. of participants = 7.
Now we need to find the no. of ways the first three athletes win the prize. The total no. of ways in which first three prizes can be won is the number of arrangements of seven different things taken 3 at a time. We can solve this using permutation.
Thus we can say that the required no of ways = \[{}^7{P_3}\] where n=7 and r=3.
Thus by applying the formula of permutation wean say,
\[{}^7{P_3}{\rm{ = }}\dfrac{{7!}}{{(7 - 3)!}}\]
\[\begin{array}{l}{\rm{ = }}\dfrac{{7!}}{{4!}}{\rm{ = }}\dfrac{{7{\rm{ x 6 x 5 x 4!}}}}{{4!}}\\{}^7{P_3}{\rm{ = 7 x 6 x 5 = 210}}\end{array}\]
Hence, there are 210 ways in which the first three athletes win the prize.
Note: If it was asked to find no. of ways in which any three athletes win the prize, then we take combination\[\begin{array}{l}{}^n{C_r}{\rm{ = }}\dfrac{{n!}}{{(n - r)!{\rm{ r!}}}}\\{}^7{C_3}{\rm{ = }}\dfrac{{7!}}{{(7 - 3)!{\rm{ 3!}}}}{\rm{ = }}\dfrac{{7!}}{{4!3!}}{\rm{ = }}\dfrac{{7{\rm{ x 6 x 5}}}}{{3{\rm{ x 2}}}}{\rm{ = 35 ways}}{\rm{.}}\end{array}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

