
Rutherford’s alpha particle scattering experiment established that
Answer
506.4k+ views
Hint: Alpha particles, also known as alpha rays or alpha radiation, are made up of two protons and two neutrons that are bound together to form a helium-$4$ nucleus-like particle. They're most commonly made during alpha decay, but they can also be made in other ways.
Complete answer:
Rutherford carried out an experiment in which he bombarded a thin sheet of gold with -particles and then observed the motion of the particles after they collided with the gold foil. Rutherford used a thin sheet of gold ($100$ nm thickness) to direct high-energy streams of -particles from a radioactive source. He wrapped a fluorescent zinc sulphide screen around the thin gold foil to analyse the deflection caused by the -particles. Certain findings made by Rutherford contradicted Thomson's atomic model.
Rutherford's findings led him to the following conclusions:
Since a large portion of the -particles bombarded at the gold sheet went through it without being deflected, the majority of the room in an atom is zero.
The gold sheet deflected some of the -particles at small angles, causing the positive charge in an atom to be unevenly distributed. In an atom, the positive charge is concentrated in a very small amount.
Just a few -particles were deflected out, implying that only a few -particles had approximately \[180^\circ \] deflection angles. As a result, the positively charged particles in an atom occupy a very small amount in comparison to the overall volume of the atom.
Since only a small percentage of -particles is deflected by small angles and only a few by larger angles. Particles (positively charged) must reach a strong positively charged centre within the atom for this to happen (like charges repel each other). The nucleus is the name given to the atom's strong positively charged centre. As a result, it was determined that protons are not evenly distributed in an atom.
Note:
Rutherford's model depicted the atom as a small, dense, positively charged centre called a nucleus, in which nearly all of the mass is concentrated, and around which the light, negative constituents known as electrons circulate at a distance, similar to planets spinning around the Sun.
Complete answer:
Rutherford carried out an experiment in which he bombarded a thin sheet of gold with -particles and then observed the motion of the particles after they collided with the gold foil. Rutherford used a thin sheet of gold ($100$ nm thickness) to direct high-energy streams of -particles from a radioactive source. He wrapped a fluorescent zinc sulphide screen around the thin gold foil to analyse the deflection caused by the -particles. Certain findings made by Rutherford contradicted Thomson's atomic model.
Rutherford's findings led him to the following conclusions:
Since a large portion of the -particles bombarded at the gold sheet went through it without being deflected, the majority of the room in an atom is zero.
The gold sheet deflected some of the -particles at small angles, causing the positive charge in an atom to be unevenly distributed. In an atom, the positive charge is concentrated in a very small amount.
Just a few -particles were deflected out, implying that only a few -particles had approximately \[180^\circ \] deflection angles. As a result, the positively charged particles in an atom occupy a very small amount in comparison to the overall volume of the atom.
Since only a small percentage of -particles is deflected by small angles and only a few by larger angles. Particles (positively charged) must reach a strong positively charged centre within the atom for this to happen (like charges repel each other). The nucleus is the name given to the atom's strong positively charged centre. As a result, it was determined that protons are not evenly distributed in an atom.
Note:
Rutherford's model depicted the atom as a small, dense, positively charged centre called a nucleus, in which nearly all of the mass is concentrated, and around which the light, negative constituents known as electrons circulate at a distance, similar to planets spinning around the Sun.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

