Answer
Verified
456.9k+ views
Hint: We will first write the given expression and then bring the integral part with A on the LHS with the other integral part and combine them. After that, we will differentiate the expression we just wrote and thus by simplifying, we will get the answer.
Complete step-by-step answer:
We are given that \[\int {\dfrac{{dx}}{{{x^n}\sqrt {ax + b} }}} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} - A\int {\dfrac{{dx}}{{{x^{n - 1}}\sqrt {ax + b} }} + C} \].
Now, we will bring the integral part on the left with the other integral part. Then, we will have with us the following expression:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^n}\sqrt {ax + b} }}} + A\int {\dfrac{{dx}}{{{x^{n - 1}}\sqrt {ax + b} }}} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} + C\]
Now, combining the both integrals on the left hand side, we will get the following expression with us:-
\[ \Rightarrow \int {\left( {\dfrac{1}{{{x^n}\sqrt {ax + b} }} + \dfrac{A}{{{x^{n - 1}}\sqrt {ax + b} }}} \right)dx} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} + C\]
Taking the LCM on the left hand side to write the above expression as follows:-
\[ \Rightarrow \int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} + C\]
Now, let us differentiate both the sides in the above expression to get the following expression:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} } \right] = \dfrac{d}{{dx}}\left( { - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}}} \right) + \dfrac{d}{{dx}}\left( C \right)\]
Since, we know that differentiation of any constant is zero. Therefore, we get:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} } \right] = \dfrac{d}{{dx}}\left( { - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}}} \right)\]
We can write it as:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} } \right] = \dfrac{1}{{(n - 1)b}}\dfrac{d}{{dx}}\left( { - \dfrac{{\sqrt {ax + b} }}{{{x^{n - 1}}}}} \right)\] ……………(1)
We know that integration and differentiation will cancel out each other and we will use the formula: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}(u) - u\dfrac{d}{{dx}}(v)}}{{{v^2}}}$.
Applying both of these things in (1), we will get:-
\[ \Rightarrow \dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }} = \dfrac{1}{{(n - 1)b}}\left[ {\dfrac{{{x^{n - 1}}\dfrac{d}{{dx}}\left( {\sqrt {ax + b} } \right) - \sqrt {ax + b} \dfrac{d}{{dx}}\left( {{x^{n - 1}}} \right)}}{{{{\left( {{x^{n - 1}}} \right)}^2}}}} \right]\] …………..(2)
We will now use the formulas:- $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\dfrac{d}{{dx}}{\left( {cx + d} \right)^n} = c{\left( {cx + d} \right)^{n - 1}} \times \dfrac{d}{{dx}}\left( {cx + d} \right) = {c^2}{\left( {cx + d} \right)^{n - 1}}$ (Because $\dfrac{d}{{dx}}(cx + d) = c$ )
Applying these in (2), we will get:-
\[ \Rightarrow \dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }} = \dfrac{1}{{(n - 1)b}}\left[ {\dfrac{{{x^{n - 1}}\dfrac{a}{{2\sqrt {ax + b} }} - \sqrt {ax + b} \left( {n - 1} \right){x^{n - 2}}}}{{{x^{2n - 2}}}}} \right]\]
We can rewrite this as:-
\[ \Rightarrow \dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }} = - \dfrac{{ax - 2\left( {n - 1} \right)(ax + b)}}{{2b(n - 1){x^n}\sqrt {ax + b} }}\]
Now, crossing out the common in denominators from both the sides, we will then get:-
\[ \Rightarrow 1 + Ax = - \dfrac{{ax - 2\left( {n - 1} \right)(ax + b)}}{{2b(n - 1)}}\]
Simplifying the RHS, we will get:-
\[ \Rightarrow 1 + Ax = - \dfrac{{ax - 2a(n - 1)x - 2b(n - 1)}}{{2b(n - 1)}}\]
Taking 1 from addition in LHS to subtraction in RHS, we will get:-
\[ \Rightarrow Ax = - \dfrac{{ax - 2a(n - 1)x - 2b(n - 1)}}{{2b(n - 1)}} - 1\]
Simplifying the RHS, we will get:-
\[ \Rightarrow Ax = \dfrac{{ - ax + 2a(n - 1)x}}{{2b(n - 1)}}\]
Taking the x from multiplication in LHS to division in RHS, we will then get:-
\[ \Rightarrow A = \dfrac{{ - a + 2a(n - 1)}}{{2b(n - 1)}}\]
Simplifying the RHS, we will get:-
\[ \Rightarrow A = \dfrac{{ - a + 2an - 2a}}{{2bn - 2b}}\]
Simplifying the RHS further, we will get:-
\[ \Rightarrow A = \dfrac{{2an - 3a}}{{2bn - 2b}}\]
We can write it as:-
\[ \Rightarrow A = \dfrac{{(2n - 3)a}}{{(2n - 2)b}}\]
Hence, the correct option is (B).
Note: The students must note that if they will try to approach this problem by using integration by parts, they would not get comparable terms on LHS and RHS which then will be extremely difficult to evaluate by opening up everything.
The students must note that integration and differentiation are basically the reverse of each other like if we add and subtract any constant, it would not make any difference. Similarly if we integrate and then differentiate or vice versa to any function, we will get the same function only.
Complete step-by-step answer:
We are given that \[\int {\dfrac{{dx}}{{{x^n}\sqrt {ax + b} }}} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} - A\int {\dfrac{{dx}}{{{x^{n - 1}}\sqrt {ax + b} }} + C} \].
Now, we will bring the integral part on the left with the other integral part. Then, we will have with us the following expression:-
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^n}\sqrt {ax + b} }}} + A\int {\dfrac{{dx}}{{{x^{n - 1}}\sqrt {ax + b} }}} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} + C\]
Now, combining the both integrals on the left hand side, we will get the following expression with us:-
\[ \Rightarrow \int {\left( {\dfrac{1}{{{x^n}\sqrt {ax + b} }} + \dfrac{A}{{{x^{n - 1}}\sqrt {ax + b} }}} \right)dx} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} + C\]
Taking the LCM on the left hand side to write the above expression as follows:-
\[ \Rightarrow \int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} = - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}} + C\]
Now, let us differentiate both the sides in the above expression to get the following expression:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} } \right] = \dfrac{d}{{dx}}\left( { - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}}} \right) + \dfrac{d}{{dx}}\left( C \right)\]
Since, we know that differentiation of any constant is zero. Therefore, we get:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} } \right] = \dfrac{d}{{dx}}\left( { - \dfrac{{\sqrt {ax + b} }}{{(n - 1)b{x^{n - 1}}}}} \right)\]
We can write it as:-
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {\int {\left( {\dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }}} \right)dx} } \right] = \dfrac{1}{{(n - 1)b}}\dfrac{d}{{dx}}\left( { - \dfrac{{\sqrt {ax + b} }}{{{x^{n - 1}}}}} \right)\] ……………(1)
We know that integration and differentiation will cancel out each other and we will use the formula: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}(u) - u\dfrac{d}{{dx}}(v)}}{{{v^2}}}$.
Applying both of these things in (1), we will get:-
\[ \Rightarrow \dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }} = \dfrac{1}{{(n - 1)b}}\left[ {\dfrac{{{x^{n - 1}}\dfrac{d}{{dx}}\left( {\sqrt {ax + b} } \right) - \sqrt {ax + b} \dfrac{d}{{dx}}\left( {{x^{n - 1}}} \right)}}{{{{\left( {{x^{n - 1}}} \right)}^2}}}} \right]\] …………..(2)
We will now use the formulas:- $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$ and $\dfrac{d}{{dx}}{\left( {cx + d} \right)^n} = c{\left( {cx + d} \right)^{n - 1}} \times \dfrac{d}{{dx}}\left( {cx + d} \right) = {c^2}{\left( {cx + d} \right)^{n - 1}}$ (Because $\dfrac{d}{{dx}}(cx + d) = c$ )
Applying these in (2), we will get:-
\[ \Rightarrow \dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }} = \dfrac{1}{{(n - 1)b}}\left[ {\dfrac{{{x^{n - 1}}\dfrac{a}{{2\sqrt {ax + b} }} - \sqrt {ax + b} \left( {n - 1} \right){x^{n - 2}}}}{{{x^{2n - 2}}}}} \right]\]
We can rewrite this as:-
\[ \Rightarrow \dfrac{{1 + Ax}}{{{x^n}\sqrt {ax + b} }} = - \dfrac{{ax - 2\left( {n - 1} \right)(ax + b)}}{{2b(n - 1){x^n}\sqrt {ax + b} }}\]
Now, crossing out the common in denominators from both the sides, we will then get:-
\[ \Rightarrow 1 + Ax = - \dfrac{{ax - 2\left( {n - 1} \right)(ax + b)}}{{2b(n - 1)}}\]
Simplifying the RHS, we will get:-
\[ \Rightarrow 1 + Ax = - \dfrac{{ax - 2a(n - 1)x - 2b(n - 1)}}{{2b(n - 1)}}\]
Taking 1 from addition in LHS to subtraction in RHS, we will get:-
\[ \Rightarrow Ax = - \dfrac{{ax - 2a(n - 1)x - 2b(n - 1)}}{{2b(n - 1)}} - 1\]
Simplifying the RHS, we will get:-
\[ \Rightarrow Ax = \dfrac{{ - ax + 2a(n - 1)x}}{{2b(n - 1)}}\]
Taking the x from multiplication in LHS to division in RHS, we will then get:-
\[ \Rightarrow A = \dfrac{{ - a + 2a(n - 1)}}{{2b(n - 1)}}\]
Simplifying the RHS, we will get:-
\[ \Rightarrow A = \dfrac{{ - a + 2an - 2a}}{{2bn - 2b}}\]
Simplifying the RHS further, we will get:-
\[ \Rightarrow A = \dfrac{{2an - 3a}}{{2bn - 2b}}\]
We can write it as:-
\[ \Rightarrow A = \dfrac{{(2n - 3)a}}{{(2n - 2)b}}\]
Hence, the correct option is (B).
Note: The students must note that if they will try to approach this problem by using integration by parts, they would not get comparable terms on LHS and RHS which then will be extremely difficult to evaluate by opening up everything.
The students must note that integration and differentiation are basically the reverse of each other like if we add and subtract any constant, it would not make any difference. Similarly if we integrate and then differentiate or vice versa to any function, we will get the same function only.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it