
Range of ${{\sin }^{-1}}x-{{\cos }^{-1}}x$ is:
A) $\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$
B) $\left[ -\dfrac{5\pi }{3},\dfrac{\pi }{3} \right]$
C) $\left[ -\dfrac{3\pi }{2},\pi \right]$
D) $\left[ 0,\pi \right]$
Answer
568.8k+ views
Hint: First, start with the range of the inverse of sin is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and of cos is $\left[ 0,\pi \right]$. After that add and subtract ${{\cos }^{-1}}x$ to get positive signs of ${{\cos }^{-1}}x$. As, we know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$, substitute $\dfrac{\pi }{2}$ in function. After that substitute the range of ${{\cos }^{-1}}x$ in the function and solve it further to get the range of the function.
Complete step-by-step answer:
Given:- $f\left( x \right)={{\sin }^{-1}}x-{{\cos }^{-1}}x$
As we know that the range of ${{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and the range of ${{\cos }^{-1}}x$ is $\left[ 0,\pi \right]$.
Now, add and subtract ${{\cos }^{-1}}x$ in the function,
$\Rightarrow$$f\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x-{{\cos }^{-1}}x-{{\cos }^{-1}}x$
As we know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. Substitute $\dfrac{\pi }{2}$ in place of ${{\sin }^{-1}}x+{{\cos }^{-1}}x$,
$\Rightarrow$$f\left( x \right)=\dfrac{\pi }{2}-2{{\cos }^{-1}}x$
Substitute the range of ${{\cos }^{-1}}x$ to find the range of the function,
$\Rightarrow$$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\left( \pi \right),\dfrac{\pi }{2}-2\left( 0 \right) \right]$
Open the bracket and multiply the terms,
$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\pi ,\dfrac{\pi }{2}-0 \right]$
Subtract the terms,
$\Rightarrow$$f\left( x \right)\in \left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$
Thus, the range of the function $f\left( x \right)$ is $\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$.
Hence, option (C) is the correct answer.
Note: A function is a relation for which each value from the set of the first components of the ordered pairs is associated with exactly one value from the set of second components of the ordered pair.
The range of a function is the set of all possible outputs for the function.
Inverse trigonometric functions are also called “Arc Functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.
The domain and range of inverse trigonometry functions are: -
Complete step-by-step answer:
Given:- $f\left( x \right)={{\sin }^{-1}}x-{{\cos }^{-1}}x$
As we know that the range of ${{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and the range of ${{\cos }^{-1}}x$ is $\left[ 0,\pi \right]$.
Now, add and subtract ${{\cos }^{-1}}x$ in the function,
$\Rightarrow$$f\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x-{{\cos }^{-1}}x-{{\cos }^{-1}}x$
As we know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. Substitute $\dfrac{\pi }{2}$ in place of ${{\sin }^{-1}}x+{{\cos }^{-1}}x$,
$\Rightarrow$$f\left( x \right)=\dfrac{\pi }{2}-2{{\cos }^{-1}}x$
Substitute the range of ${{\cos }^{-1}}x$ to find the range of the function,
$\Rightarrow$$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\left( \pi \right),\dfrac{\pi }{2}-2\left( 0 \right) \right]$
Open the bracket and multiply the terms,
$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\pi ,\dfrac{\pi }{2}-0 \right]$
Subtract the terms,
$\Rightarrow$$f\left( x \right)\in \left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$
Thus, the range of the function $f\left( x \right)$ is $\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$.
Hence, option (C) is the correct answer.
Note: A function is a relation for which each value from the set of the first components of the ordered pairs is associated with exactly one value from the set of second components of the ordered pair.
The range of a function is the set of all possible outputs for the function.
Inverse trigonometric functions are also called “Arc Functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.
The domain and range of inverse trigonometry functions are: -
| Function | Domain | Range |
| ${{\sin }^{-1}}x$ | [-1, 1] | $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ |
| ${{\cos }^{-1}}x$ | [-1, 1] | $\left[ 0,\pi \right]$ |
| ${{\tan }^{-1}}x$ | For all real numbers | $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ |
| ${{\cot }^{-1}}x$ | For all real numbers | $\left( 0,\pi \right)$ |
| ${{\sec }^{-1}}x$ | $\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)$ | $\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$ |
| ${{\operatorname{cosec}}^{-1}}x$ | $\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)$ | $\left[ -\dfrac{\pi }{2},0 \right)\cup \left( 0,\dfrac{\pi }{2} \right]$. |
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

