Answer
Verified
454.5k+ views
Hint: First, start with the range of the inverse of sin is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and of cos is $\left[ 0,\pi \right]$. After that add and subtract ${{\cos }^{-1}}x$ to get positive signs of ${{\cos }^{-1}}x$. As, we know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$, substitute $\dfrac{\pi }{2}$ in function. After that substitute the range of ${{\cos }^{-1}}x$ in the function and solve it further to get the range of the function.
Complete step-by-step answer:
Given:- $f\left( x \right)={{\sin }^{-1}}x-{{\cos }^{-1}}x$
As we know that the range of ${{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and the range of ${{\cos }^{-1}}x$ is $\left[ 0,\pi \right]$.
Now, add and subtract ${{\cos }^{-1}}x$ in the function,
$\Rightarrow$$f\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x-{{\cos }^{-1}}x-{{\cos }^{-1}}x$
As we know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. Substitute $\dfrac{\pi }{2}$ in place of ${{\sin }^{-1}}x+{{\cos }^{-1}}x$,
$\Rightarrow$$f\left( x \right)=\dfrac{\pi }{2}-2{{\cos }^{-1}}x$
Substitute the range of ${{\cos }^{-1}}x$ to find the range of the function,
$\Rightarrow$$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\left( \pi \right),\dfrac{\pi }{2}-2\left( 0 \right) \right]$
Open the bracket and multiply the terms,
$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\pi ,\dfrac{\pi }{2}-0 \right]$
Subtract the terms,
$\Rightarrow$$f\left( x \right)\in \left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$
Thus, the range of the function $f\left( x \right)$ is $\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$.
Hence, option (C) is the correct answer.
Note: A function is a relation for which each value from the set of the first components of the ordered pairs is associated with exactly one value from the set of second components of the ordered pair.
The range of a function is the set of all possible outputs for the function.
Inverse trigonometric functions are also called “Arc Functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.
The domain and range of inverse trigonometry functions are: -
Complete step-by-step answer:
Given:- $f\left( x \right)={{\sin }^{-1}}x-{{\cos }^{-1}}x$
As we know that the range of ${{\sin }^{-1}}x$ is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ and the range of ${{\cos }^{-1}}x$ is $\left[ 0,\pi \right]$.
Now, add and subtract ${{\cos }^{-1}}x$ in the function,
$\Rightarrow$$f\left( x \right)={{\sin }^{-1}}x+{{\cos }^{-1}}x-{{\cos }^{-1}}x-{{\cos }^{-1}}x$
As we know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}$. Substitute $\dfrac{\pi }{2}$ in place of ${{\sin }^{-1}}x+{{\cos }^{-1}}x$,
$\Rightarrow$$f\left( x \right)=\dfrac{\pi }{2}-2{{\cos }^{-1}}x$
Substitute the range of ${{\cos }^{-1}}x$ to find the range of the function,
$\Rightarrow$$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\left( \pi \right),\dfrac{\pi }{2}-2\left( 0 \right) \right]$
Open the bracket and multiply the terms,
$f\left( x \right)\in \left[ \dfrac{\pi }{2}-2\pi ,\dfrac{\pi }{2}-0 \right]$
Subtract the terms,
$\Rightarrow$$f\left( x \right)\in \left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$
Thus, the range of the function $f\left( x \right)$ is $\left[ -\dfrac{3\pi }{2},\dfrac{\pi }{2} \right]$.
Hence, option (C) is the correct answer.
Note: A function is a relation for which each value from the set of the first components of the ordered pairs is associated with exactly one value from the set of second components of the ordered pair.
The range of a function is the set of all possible outputs for the function.
Inverse trigonometric functions are also called “Arc Functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.
The domain and range of inverse trigonometry functions are: -
Function | Domain | Range |
${{\sin }^{-1}}x$ | [-1, 1] | $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ |
${{\cos }^{-1}}x$ | [-1, 1] | $\left[ 0,\pi \right]$ |
${{\tan }^{-1}}x$ | For all real numbers | $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ |
${{\cot }^{-1}}x$ | For all real numbers | $\left( 0,\pi \right)$ |
${{\sec }^{-1}}x$ | $\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)$ | $\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$ |
${{\operatorname{cosec}}^{-1}}x$ | $\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)$ | $\left[ -\dfrac{\pi }{2},0 \right)\cup \left( 0,\dfrac{\pi }{2} \right]$. |
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE