
Question:
The sum $^{20}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2}...{ + ^{20}}{C_{10}}$ is equal to
A. $20! + \dfrac{{20!}}{{2{{(10!)}^2}}}$
B. \[{2^{19}} - \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}}\]
C. ${2^{19}}{ + ^{20}}{C_{10}}$
D. None of these
Answer
569.4k+ views
Hint:
Observe that these are the terms of the binomial expression ${(a + b)^n}$ where $a = 1$, $b = 1$ and $n = 20$. We shall find the sum of the coefficients after using the formula. For further simplification use the concepts of combination.
Complete step by step solution:
We already know that, the binomial expansion of $a$ and $b$ raised to the power $n$ is given by
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{n - 1}}{b^1} + ...{ + ^n}{C_{n - 1}}{a^1}{b^{n - 1}}{ + ^n}{C_n}{a^0}{b^n}$
Putting $a = 1$ , $b = 1$ and $n = 20$ in the above expression we get :
${(2)^n}{ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_{20}}$ … (1)
Now, we have the sum of coefficients as the ${20}^{th}$ power of 2. We know that by the concept of combinations,$^n{C_r}{ = ^n}{C_{n - r}}$. So, using $^n{C_r}{ = ^n}{C_{n - r}}$ in equation (1), we get:
$
{(2)^{20}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}]{ - ^{20}}{C_{10}} \\
\Rightarrow {(2)^{20}}{ + ^{20}}{C_{10}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow \dfrac{1}{2}[{(2)^{20}}{ + ^{20}}{C_{10}}] = {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow {2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}){ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}} \\
$
So, the sum of the given coefficients is ${2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}})$. This can be further simplified using the formula for combination $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$. Now, put the values $n = 20$ and $r = 10$ to simplify:
$
{2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}) \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{10!(20 - 10)!}} \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}} \\
$
So, the sum of expression is \[{2^{19}} - \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}}\]
Therefore, the correct answer is B.
Note:
The concepts of permutations and combinations are vital while solving the problems related to binomial theorem. This question could have been attempted using the expansion of ${(1 + x)^n}$. Combination is used whenever we need to choose items.
Observe that these are the terms of the binomial expression ${(a + b)^n}$ where $a = 1$, $b = 1$ and $n = 20$. We shall find the sum of the coefficients after using the formula. For further simplification use the concepts of combination.
Complete step by step solution:
We already know that, the binomial expansion of $a$ and $b$ raised to the power $n$ is given by
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{n - 1}}{b^1} + ...{ + ^n}{C_{n - 1}}{a^1}{b^{n - 1}}{ + ^n}{C_n}{a^0}{b^n}$
Putting $a = 1$ , $b = 1$ and $n = 20$ in the above expression we get :
${(2)^n}{ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_{20}}$ … (1)
Now, we have the sum of coefficients as the ${20}^{th}$ power of 2. We know that by the concept of combinations,$^n{C_r}{ = ^n}{C_{n - r}}$. So, using $^n{C_r}{ = ^n}{C_{n - r}}$ in equation (1), we get:
$
{(2)^{20}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}]{ - ^{20}}{C_{10}} \\
\Rightarrow {(2)^{20}}{ + ^{20}}{C_{10}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow \dfrac{1}{2}[{(2)^{20}}{ + ^{20}}{C_{10}}] = {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow {2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}){ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}} \\
$
So, the sum of the given coefficients is ${2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}})$. This can be further simplified using the formula for combination $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$. Now, put the values $n = 20$ and $r = 10$ to simplify:
$
{2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}) \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{10!(20 - 10)!}} \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}} \\
$
So, the sum of expression is \[{2^{19}} - \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}}\]
Therefore, the correct answer is B.
Note:
The concepts of permutations and combinations are vital while solving the problems related to binomial theorem. This question could have been attempted using the expansion of ${(1 + x)^n}$. Combination is used whenever we need to choose items.
Recently Updated Pages
Master Class 12 Chemistry: Engaging Questions & Answers for Success

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

