
Question:
The sum $^{20}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2}...{ + ^{20}}{C_{10}}$ is equal to
A. $20! + \dfrac{{20!}}{{2{{(10!)}^2}}}$
B. \[{2^{19}} - \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}}\]
C. ${2^{19}}{ + ^{20}}{C_{10}}$
D. None of these
Answer
582.9k+ views
Hint:
Observe that these are the terms of the binomial expression ${(a + b)^n}$ where $a = 1$, $b = 1$ and $n = 20$. We shall find the sum of the coefficients after using the formula. For further simplification use the concepts of combination.
Complete step by step solution:
We already know that, the binomial expansion of $a$ and $b$ raised to the power $n$ is given by
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{n - 1}}{b^1} + ...{ + ^n}{C_{n - 1}}{a^1}{b^{n - 1}}{ + ^n}{C_n}{a^0}{b^n}$
Putting $a = 1$ , $b = 1$ and $n = 20$ in the above expression we get :
${(2)^n}{ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_{20}}$ … (1)
Now, we have the sum of coefficients as the ${20}^{th}$ power of 2. We know that by the concept of combinations,$^n{C_r}{ = ^n}{C_{n - r}}$. So, using $^n{C_r}{ = ^n}{C_{n - r}}$ in equation (1), we get:
$
{(2)^{20}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}]{ - ^{20}}{C_{10}} \\
\Rightarrow {(2)^{20}}{ + ^{20}}{C_{10}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow \dfrac{1}{2}[{(2)^{20}}{ + ^{20}}{C_{10}}] = {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow {2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}){ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}} \\
$
So, the sum of the given coefficients is ${2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}})$. This can be further simplified using the formula for combination $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$. Now, put the values $n = 20$ and $r = 10$ to simplify:
$
{2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}) \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{10!(20 - 10)!}} \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}} \\
$
So, the sum of expression is \[{2^{19}} - \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}}\]
Therefore, the correct answer is B.
Note:
The concepts of permutations and combinations are vital while solving the problems related to binomial theorem. This question could have been attempted using the expansion of ${(1 + x)^n}$. Combination is used whenever we need to choose items.
Observe that these are the terms of the binomial expression ${(a + b)^n}$ where $a = 1$, $b = 1$ and $n = 20$. We shall find the sum of the coefficients after using the formula. For further simplification use the concepts of combination.
Complete step by step solution:
We already know that, the binomial expansion of $a$ and $b$ raised to the power $n$ is given by
${(a + b)^n}{ = ^n}{C_0}{a^n}{b^0}{ + ^n}{C_1}{a^{n - 1}}{b^1} + ...{ + ^n}{C_{n - 1}}{a^1}{b^{n - 1}}{ + ^n}{C_n}{a^0}{b^n}$
Putting $a = 1$ , $b = 1$ and $n = 20$ in the above expression we get :
${(2)^n}{ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_{20}}$ … (1)
Now, we have the sum of coefficients as the ${20}^{th}$ power of 2. We know that by the concept of combinations,$^n{C_r}{ = ^n}{C_{n - r}}$. So, using $^n{C_r}{ = ^n}{C_{n - r}}$ in equation (1), we get:
$
{(2)^{20}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}]{ - ^{20}}{C_{10}} \\
\Rightarrow {(2)^{20}}{ + ^{20}}{C_{10}} = 2 \times {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow \dfrac{1}{2}[{(2)^{20}}{ + ^{20}}{C_{10}}] = {[^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}}] \\
\Rightarrow {2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}){ = ^{20}}{C_0}{ + ^{20}}{C_1}{ + ^{20}}{C_2} + ...{ + ^{20}}{C_9}{ + ^{20}}{C_{10}} \\
$
So, the sum of the given coefficients is ${2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}})$. This can be further simplified using the formula for combination $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$. Now, put the values $n = 20$ and $r = 10$ to simplify:
$
{2^{19}} + \dfrac{1}{2}{(^{20}}{C_{10}}) \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{10!(20 - 10)!}} \\
\Rightarrow {2^{19}} + \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}} \\
$
So, the sum of expression is \[{2^{19}} - \dfrac{1}{2}.\dfrac{{20!}}{{{{(10!)}^2}}}\]
Therefore, the correct answer is B.
Note:
The concepts of permutations and combinations are vital while solving the problems related to binomial theorem. This question could have been attempted using the expansion of ${(1 + x)^n}$. Combination is used whenever we need to choose items.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

