# Prove the identity$\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }} = 1 - 2\sec \theta \tan \theta + 2{\tan ^2}\theta $.

Last updated date: 31st Mar 2023

•

Total views: 307.5k

•

Views today: 4.87k

Answer

Verified

307.5k+ views

Hint: - Here we go through by applying the properties of rationalization, first apply the rationalization in the left hand side and then apply the trigonometric identities to prove the result given in the right hand side.

“Complete step-by-step answer:”

Given $\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }} = 1 - 2\sec \theta \tan \theta + 2{\tan ^2}\theta $

Let us assume the function on the left hand side L.H.S. i.e. $\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }}$ and the function that is on the right hand side R.H.S. i.e. $1 - 2\sec \theta \tan \theta + 2{\tan ^2}\theta $.

Let us consider the L.H.S.

$ \Rightarrow \dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }}$ Here we apply the rationalization rule to make in the form of trigonometric identities.

I.e. $\left( {\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }}} \right) \times \left( {\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta - \tan \theta }}} \right)$ as we know in the rationalization we multiply both top and bottom by the conjugate of the denominator.

$ \Rightarrow \dfrac{{{{\left( {\sec \theta - \tan \theta } \right)}^2}}}{{{{\sec }^2}\theta - {{\tan }^2}\theta }}$ As we know ${\sec ^2}\theta - {\tan ^2}\theta = 1$ so we can write it as,

$ \Rightarrow \dfrac{{{{\left( {\sec \theta - \tan \theta } \right)}^2}}}{1}$

$ \Rightarrow {\left( {\sec \theta - \tan \theta } \right)^2} = {\sec ^2}\theta + {\tan ^2}\theta - 2\sec \theta \tan \theta $ As we know by algebraic formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$

$ \Rightarrow \left( {1 + {{\tan }^2}\theta } \right) + {\tan ^2}\theta - 2\sec \theta \tan \theta $ $\because $(${\sec ^2}\theta - {\tan ^2}\theta = 1$)

$ \Rightarrow 1 - 2\sec \theta \tan \theta + 2{\tan ^2}\theta $

Here we can see that the L.H.S is equal to the R.H.S.

Hence, proved.

Note:- Whenever we face such a type of question in which the conjugate of numerator is given in denominator then the key concept for solving the question is always try to start with applying the rationalization rule and then for proving this question we apply the trigonometry identity .

“Complete step-by-step answer:”

Given $\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }} = 1 - 2\sec \theta \tan \theta + 2{\tan ^2}\theta $

Let us assume the function on the left hand side L.H.S. i.e. $\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }}$ and the function that is on the right hand side R.H.S. i.e. $1 - 2\sec \theta \tan \theta + 2{\tan ^2}\theta $.

Let us consider the L.H.S.

$ \Rightarrow \dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }}$ Here we apply the rationalization rule to make in the form of trigonometric identities.

I.e. $\left( {\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }}} \right) \times \left( {\dfrac{{\sec \theta - \tan \theta }}{{\sec \theta - \tan \theta }}} \right)$ as we know in the rationalization we multiply both top and bottom by the conjugate of the denominator.

$ \Rightarrow \dfrac{{{{\left( {\sec \theta - \tan \theta } \right)}^2}}}{{{{\sec }^2}\theta - {{\tan }^2}\theta }}$ As we know ${\sec ^2}\theta - {\tan ^2}\theta = 1$ so we can write it as,

$ \Rightarrow \dfrac{{{{\left( {\sec \theta - \tan \theta } \right)}^2}}}{1}$

$ \Rightarrow {\left( {\sec \theta - \tan \theta } \right)^2} = {\sec ^2}\theta + {\tan ^2}\theta - 2\sec \theta \tan \theta $ As we know by algebraic formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$

$ \Rightarrow \left( {1 + {{\tan }^2}\theta } \right) + {\tan ^2}\theta - 2\sec \theta \tan \theta $ $\because $(${\sec ^2}\theta - {\tan ^2}\theta = 1$)

$ \Rightarrow 1 - 2\sec \theta \tan \theta + 2{\tan ^2}\theta $

Here we can see that the L.H.S is equal to the R.H.S.

Hence, proved.

Note:- Whenever we face such a type of question in which the conjugate of numerator is given in denominator then the key concept for solving the question is always try to start with applying the rationalization rule and then for proving this question we apply the trigonometry identity .

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?