Prove the following:
$\left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right|$
Answer
Verified
510k+ views
Hint: -Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
How much time does it take to bleed after eating p class 12 biology CBSE