
Prove the following:
$\left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right|$
Answer
596.7k+ views
Hint: -Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

