
Prove the following:
$\left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right|$
Answer
615k+ views
Hint: -Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

