Prove the following:
$\left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right|$
Answer
363k+ views
Hint: -Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Last updated date: 23rd Sep 2023
•
Total views: 363k
•
Views today: 8.63k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG
