# Prove the following inverse trigonometric equation:

${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right).$

Last updated date: 24th Mar 2023

•

Total views: 306.6k

•

Views today: 5.85k

Answer

Verified

306.6k+ views

Hint: To solve expressions with irrational value in the denominator , first rationalise the denominator by multiplying it with its conjugate.

First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.

Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .

So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$

$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get

$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$

Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$

Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .

On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get

L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$

Now,

We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$

And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$

So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.

On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get

L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$

\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]

\[=\dfrac{x}{2}\]

Now, we will consider the right hand side of the equation.

The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].

Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.

So, L.H.S = R.H.S

Hence proved.

Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.

First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.

Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .

So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$

$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get

$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$

Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$

Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .

On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get

L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$

Now,

We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$

And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$

So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.

On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get

L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$

\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]

\[=\dfrac{x}{2}\]

Now, we will consider the right hand side of the equation.

The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].

Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.

So, L.H.S = R.H.S

Hence proved.

Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?