Answer

Verified

408k+ views

Hint: To solve expressions with irrational value in the denominator , first rationalise the denominator by multiplying it with its conjugate.

First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.

Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .

So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$

$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get

$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$

Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$

Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .

On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get

L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$

Now,

We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$

And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$

So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.

On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get

L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$

\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]

\[=\dfrac{x}{2}\]

Now, we will consider the right hand side of the equation.

The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].

Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.

So, L.H.S = R.H.S

Hence proved.

Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.

First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.

Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .

So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$

$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get

$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$

Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$

$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$

Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$

Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .

On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get

L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$

Now,

We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$

And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$

So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.

On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get

L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$

\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]

\[=\dfrac{x}{2}\]

Now, we will consider the right hand side of the equation.

The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].

Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.

So, L.H.S = R.H.S

Hence proved.

Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Why should electric field lines never cross each other class 12 physics CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

State the laws of reflection of light

State and prove Bernoullis theorem class 11 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE