
Prove the following inverse trigonometric equation:
${{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\dfrac{x}{2};x\in \left( 0,\dfrac{\pi }{4} \right).$
Answer
621.6k+ views
Hint: To solve expressions with irrational value in the denominator , first rationalise the denominator by multiplying it with its conjugate.
First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.
Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .
So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$
$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get
$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$
Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$
Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .
On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get
L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$
Now,
We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$
And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.
On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get
L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$
\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]
\[=\dfrac{x}{2}\]
Now, we will consider the right hand side of the equation.
The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].
Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.
So, L.H.S = R.H.S
Hence proved.
Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.
First we will consider the left hand side of the equation. We are given $LHS={{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)$.
Now, we can see that the denominator is irrational . So , we need to rationalise it first. We can do this by multiplying and dividing by its conjugate , i.e. $\sqrt{1+\sin x}+\sqrt{1-\sin x}$ .
So , we have $LHS={{\cot }^{-1}}\left( \dfrac{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\times \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right)$
$={{\cot }^{-1}}\left( \dfrac{{{\left( \sqrt{1+\sin x}+\sqrt{1-\sin x} \right)}^{2}}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now, we know \[{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\]. Using this identity in the numerator, we get
$={{\cot }^{-1}}\left( \dfrac{1+\sin x+1-\sin x+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}+\sqrt{1-\sin x})} \right)$
Now , we know \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]. Using this identity in the denominator , we get
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{\left( 1+\sin x \right)\left( 1-\sin x \right)}}{(1+\sin x)-(1-\sin x)} \right)$
$={{\cot }^{-1}}\left( \dfrac{2+2\sqrt{1-{{\sin }^{2}}x}}{2\sin x} \right)$
Now, we know ${{\cos }^{2}}x+{{\sin }^{2}}x=1\Rightarrow 1-{{\sin }^{2}}={{\cos }^{2}}x$
Now, we will substitute $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S .
On substituting $1-{{\sin }^{2}}={{\cos }^{2}}x$ in the numerator of the L.H.S , we get
L.H.S$={{\cot }^{-1}}\left( \dfrac{2+2\cos x}{2\sin x} \right)$
Now,
We know, $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$
And $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
So, we will substitute $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ in the numerator of the L.H.S and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$in the denominator of the L.H.S.
On substituting $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ in the left hand side of the equation, we get
L.H.S $={{\cot }^{-1}}\left( \dfrac{2{{\cos }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right)$
\[={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)\]
\[=\dfrac{x}{2}\]
Now, we will consider the right hand side of the equation.
The value given in the right hand side of the equation is equal to \[\dfrac{x}{2}\].
Now, we can see that the value obtained by solving the expression in the left hand side of the equation and the value given in the right hand side of the equation are equal.
So, L.H.S = R.H.S
Hence proved.
Note: Remember that conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$ and not $\left( -\sqrt{a}-\sqrt{b} \right)$. Students generally make this mistake and get their answer wrong.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

