Answer

Verified

482.4k+ views

Hint: Multiply numerator and denominator of LHS by 1-cosx and use the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Use Trigonometric identities $1-{{\cos }^{2}}x={{\sin }^{2}}x$ and $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$. Alternatively, simplify RHS by using the identity ${{\csc }^{2}}x-{{\cot }^{2}}x=1$

and then using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$

“Complete step-by-step answer:”

LHS $=\dfrac{1-\cos x}{1+\cos x}$

Multiplying numerator and denominator by 1-cosx, we get

LHS $=\dfrac{1-\cos x}{1+\cos x}\times \dfrac{1-\cos x}{1-\cos x}=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$

We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$

Put a = 1 and b = cosx we get\[\left( 1+\cos x \right)\left( 1-\cos x \right)=1-{{\cos }^{2}}x\]

We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$

Hence we have \[\left( 1+\cos x \right)\left( 1-\cos x \right)={{\sin }^{2}}x\]

Hence we have

LHS $=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{{{\sin }^{2}}x}=\left( \dfrac{1-\cos x}{\sin x} \right)$

We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$

Using the above identity, we get

LHS $={{\left( \dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x} \right)}^{2}}$

We know $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$

Using the above identities, we get

LHS $={{\left( \csc x-\cot x \right)}^{2}}=$ RHS

Note: Alternate solution [1]

We know that

${{\csc }^{2}}x-{{\cot }^{2}}x=1$

Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$

$\begin{align}

& \Rightarrow \left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1 \\

& \Rightarrow \csc x-\cot x=\dfrac{1}{\csc x+\cot x} \\

\end{align}$

Multiplying both sides by cosec x - cot x, we get

${{\left( \csc x-\cot x \right)}^{2}}=\dfrac{\csc x-\cot x}{\csc x+\cot x}$

Hence we have

RHS $=\dfrac{\csc x-\cot x}{\csc x+\cot x}$

Multiplying the numerator and denominator by sinx we get

RHS $=\dfrac{\csc x\sin x-\cot x\sin x}{\csc x\sin x+\cot x\sin x}$

Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get

RHS $=\dfrac{1-\cos x}{1+\cos x}=$LHS

Hence we have LHS = RHS

Alternate Solution [2]

We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$

Hence we have

\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}\]

Using $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ in the expression cosecx -cotx we get

$\csc x-\cot x=\dfrac{1-\cos x}{\sin x}$

We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$

Using the above identities, we get

$\csc x-\cot x=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$

Hence we have

\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}={{\left( \tan \dfrac{x}{2} \right)}^{2}}={{\left( \csc x-\cot x \right)}^{2}}\]

Hence we have LHS = RHS

Hence proved

and then using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$

“Complete step-by-step answer:”

LHS $=\dfrac{1-\cos x}{1+\cos x}$

Multiplying numerator and denominator by 1-cosx, we get

LHS $=\dfrac{1-\cos x}{1+\cos x}\times \dfrac{1-\cos x}{1-\cos x}=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$

We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$

Put a = 1 and b = cosx we get\[\left( 1+\cos x \right)\left( 1-\cos x \right)=1-{{\cos }^{2}}x\]

We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$

Hence we have \[\left( 1+\cos x \right)\left( 1-\cos x \right)={{\sin }^{2}}x\]

Hence we have

LHS $=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{{{\sin }^{2}}x}=\left( \dfrac{1-\cos x}{\sin x} \right)$

We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$

Using the above identity, we get

LHS $={{\left( \dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x} \right)}^{2}}$

We know $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$

Using the above identities, we get

LHS $={{\left( \csc x-\cot x \right)}^{2}}=$ RHS

Note: Alternate solution [1]

We know that

${{\csc }^{2}}x-{{\cot }^{2}}x=1$

Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$

$\begin{align}

& \Rightarrow \left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1 \\

& \Rightarrow \csc x-\cot x=\dfrac{1}{\csc x+\cot x} \\

\end{align}$

Multiplying both sides by cosec x - cot x, we get

${{\left( \csc x-\cot x \right)}^{2}}=\dfrac{\csc x-\cot x}{\csc x+\cot x}$

Hence we have

RHS $=\dfrac{\csc x-\cot x}{\csc x+\cot x}$

Multiplying the numerator and denominator by sinx we get

RHS $=\dfrac{\csc x\sin x-\cot x\sin x}{\csc x\sin x+\cot x\sin x}$

Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get

RHS $=\dfrac{1-\cos x}{1+\cos x}=$LHS

Hence we have LHS = RHS

Alternate Solution [2]

We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$

Hence we have

\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}\]

Using $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ in the expression cosecx -cotx we get

$\csc x-\cot x=\dfrac{1-\cos x}{\sin x}$

We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$

Using the above identities, we get

$\csc x-\cot x=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$

Hence we have

\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}={{\left( \tan \dfrac{x}{2} \right)}^{2}}={{\left( \csc x-\cot x \right)}^{2}}\]

Hence we have LHS = RHS

Hence proved

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

A rainbow has circular shape because A The earth is class 11 physics CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell