
Prove the following identity
$\dfrac{1-\cos x}{1+\cos x}={{\left( \csc x-\cot x \right)}^{2}}$
Answer
605.1k+ views
Hint: Multiply numerator and denominator of LHS by 1-cosx and use the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Use Trigonometric identities $1-{{\cos }^{2}}x={{\sin }^{2}}x$ and $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$. Alternatively, simplify RHS by using the identity ${{\csc }^{2}}x-{{\cot }^{2}}x=1$
and then using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
“Complete step-by-step answer:”
LHS $=\dfrac{1-\cos x}{1+\cos x}$
Multiplying numerator and denominator by 1-cosx, we get
LHS $=\dfrac{1-\cos x}{1+\cos x}\times \dfrac{1-\cos x}{1-\cos x}=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$
We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Put a = 1 and b = cosx we get\[\left( 1+\cos x \right)\left( 1-\cos x \right)=1-{{\cos }^{2}}x\]
We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$
Hence we have \[\left( 1+\cos x \right)\left( 1-\cos x \right)={{\sin }^{2}}x\]
Hence we have
LHS $=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{{{\sin }^{2}}x}=\left( \dfrac{1-\cos x}{\sin x} \right)$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
LHS $={{\left( \dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x} \right)}^{2}}$
We know $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$
Using the above identities, we get
LHS $={{\left( \csc x-\cot x \right)}^{2}}=$ RHS
Note: Alternate solution [1]
We know that
${{\csc }^{2}}x-{{\cot }^{2}}x=1$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
$\begin{align}
& \Rightarrow \left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1 \\
& \Rightarrow \csc x-\cot x=\dfrac{1}{\csc x+\cot x} \\
\end{align}$
Multiplying both sides by cosec x - cot x, we get
${{\left( \csc x-\cot x \right)}^{2}}=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Hence we have
RHS $=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Multiplying the numerator and denominator by sinx we get
RHS $=\dfrac{\csc x\sin x-\cot x\sin x}{\csc x\sin x+\cot x\sin x}$
Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get
RHS $=\dfrac{1-\cos x}{1+\cos x}=$LHS
Hence we have LHS = RHS
Alternate Solution [2]
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}\]
Using $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ in the expression cosecx -cotx we get
$\csc x-\cot x=\dfrac{1-\cos x}{\sin x}$
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Using the above identities, we get
$\csc x-\cot x=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}={{\left( \tan \dfrac{x}{2} \right)}^{2}}={{\left( \csc x-\cot x \right)}^{2}}\]
Hence we have LHS = RHS
Hence proved
and then using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
“Complete step-by-step answer:”
LHS $=\dfrac{1-\cos x}{1+\cos x}$
Multiplying numerator and denominator by 1-cosx, we get
LHS $=\dfrac{1-\cos x}{1+\cos x}\times \dfrac{1-\cos x}{1-\cos x}=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$
We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Put a = 1 and b = cosx we get\[\left( 1+\cos x \right)\left( 1-\cos x \right)=1-{{\cos }^{2}}x\]
We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$
Hence we have \[\left( 1+\cos x \right)\left( 1-\cos x \right)={{\sin }^{2}}x\]
Hence we have
LHS $=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{{{\sin }^{2}}x}=\left( \dfrac{1-\cos x}{\sin x} \right)$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
LHS $={{\left( \dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x} \right)}^{2}}$
We know $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$
Using the above identities, we get
LHS $={{\left( \csc x-\cot x \right)}^{2}}=$ RHS
Note: Alternate solution [1]
We know that
${{\csc }^{2}}x-{{\cot }^{2}}x=1$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
$\begin{align}
& \Rightarrow \left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1 \\
& \Rightarrow \csc x-\cot x=\dfrac{1}{\csc x+\cot x} \\
\end{align}$
Multiplying both sides by cosec x - cot x, we get
${{\left( \csc x-\cot x \right)}^{2}}=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Hence we have
RHS $=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Multiplying the numerator and denominator by sinx we get
RHS $=\dfrac{\csc x\sin x-\cot x\sin x}{\csc x\sin x+\cot x\sin x}$
Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get
RHS $=\dfrac{1-\cos x}{1+\cos x}=$LHS
Hence we have LHS = RHS
Alternate Solution [2]
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}\]
Using $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ in the expression cosecx -cotx we get
$\csc x-\cot x=\dfrac{1-\cos x}{\sin x}$
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Using the above identities, we get
$\csc x-\cot x=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}={{\left( \tan \dfrac{x}{2} \right)}^{2}}={{\left( \csc x-\cot x \right)}^{2}}\]
Hence we have LHS = RHS
Hence proved
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

