# Prove the following : \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]

Answer

Verified

380.7k+ views

Hint: Take the LHS of the expression. Apply the basic trigonometric identities in the numerator and denominator of the expression and simplify it. Hence, prove that LHS=RHS.

“Complete step-by-step answer:”

We have been given the expression, \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\].

Let us consider the LHS of the expression.

LHS = \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}\].

We know the basic trigonometric identities,

\[\begin{align}

& \cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

\end{align}\]

Let us take \[\left( \cos 4x+\cos 2x \right)\] from the numerator and apply the trigonometric identity.

\[\therefore \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)\]

\[\begin{align}

& =2\cos \left( \dfrac{6x}{2} \right)\cos \left( \dfrac{2x}{2} \right) \\

& =2\cos 3x\cos x \\

\end{align}\]

Now let us substitute the values of \[\left( \cos 4x+\cos 2x \right)\] and \[\left( \sin 4x+\sin 2x \right)\] in the LHS.

\[\begin{align}

& LHS=\dfrac{\left( \cos 4x+\cos 2x \right)+\cos 3x}{\left( \sin 4x+\sin 2x \right)+\sin 3x} \\

& LHS=\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\

\end{align}\]

Take \[\left( \cos 3x \right)\]common from the numerator and \[\left( \sin 3x \right)\]from the denominator.

\[=\dfrac{\cos 3x\left[ 2\cos x+1 \right]}{\sin 3x\left[ 2\cos x+1 \right]}\]

Cancel out \[\left( 2\cos x+1 \right)\] from the numerator and denominator.

\[\therefore LHS=\dfrac{\cos 3x}{\sin 3x}\]

We know that, \[\dfrac{\cos x}{\sin x}=\cot x\]

Hence, \[\dfrac{\cos 3x}{\sin 3x}=\cot 3x\].

\[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]

\[\therefore \]LHS = RHS

Hence proved.

Note: Remember the basic trigonometric identities like \[\left( \sin a+\sin b \right)\] and \[\left( \cos a+\cos b \right)\] which we have used to solve this expression. Trigonometric identities are an important section in maths. Just apply the formula and simplify it to get the required answer.

“Complete step-by-step answer:”

We have been given the expression, \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\].

Let us consider the LHS of the expression.

LHS = \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}\].

We know the basic trigonometric identities,

\[\begin{align}

& \cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

\end{align}\]

Let us take \[\left( \cos 4x+\cos 2x \right)\] from the numerator and apply the trigonometric identity.

\[\therefore \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)\]

\[\begin{align}

& =2\cos \left( \dfrac{6x}{2} \right)\cos \left( \dfrac{2x}{2} \right) \\

& =2\cos 3x\cos x \\

\end{align}\]

Now let us substitute the values of \[\left( \cos 4x+\cos 2x \right)\] and \[\left( \sin 4x+\sin 2x \right)\] in the LHS.

\[\begin{align}

& LHS=\dfrac{\left( \cos 4x+\cos 2x \right)+\cos 3x}{\left( \sin 4x+\sin 2x \right)+\sin 3x} \\

& LHS=\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\

\end{align}\]

Take \[\left( \cos 3x \right)\]common from the numerator and \[\left( \sin 3x \right)\]from the denominator.

\[=\dfrac{\cos 3x\left[ 2\cos x+1 \right]}{\sin 3x\left[ 2\cos x+1 \right]}\]

Cancel out \[\left( 2\cos x+1 \right)\] from the numerator and denominator.

\[\therefore LHS=\dfrac{\cos 3x}{\sin 3x}\]

We know that, \[\dfrac{\cos x}{\sin x}=\cot x\]

Hence, \[\dfrac{\cos 3x}{\sin 3x}=\cot 3x\].

\[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]

\[\therefore \]LHS = RHS

Hence proved.

Note: Remember the basic trigonometric identities like \[\left( \sin a+\sin b \right)\] and \[\left( \cos a+\cos b \right)\] which we have used to solve this expression. Trigonometric identities are an important section in maths. Just apply the formula and simplify it to get the required answer.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE