Answer

Verified

482.7k+ views

Hint: Take the LHS of the expression. Apply the basic trigonometric identities in the numerator and denominator of the expression and simplify it. Hence, prove that LHS=RHS.

“Complete step-by-step answer:”

We have been given the expression, \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\].

Let us consider the LHS of the expression.

LHS = \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}\].

We know the basic trigonometric identities,

\[\begin{align}

& \cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

\end{align}\]

Let us take \[\left( \cos 4x+\cos 2x \right)\] from the numerator and apply the trigonometric identity.

\[\therefore \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)\]

\[\begin{align}

& =2\cos \left( \dfrac{6x}{2} \right)\cos \left( \dfrac{2x}{2} \right) \\

& =2\cos 3x\cos x \\

\end{align}\]

Now let us substitute the values of \[\left( \cos 4x+\cos 2x \right)\] and \[\left( \sin 4x+\sin 2x \right)\] in the LHS.

\[\begin{align}

& LHS=\dfrac{\left( \cos 4x+\cos 2x \right)+\cos 3x}{\left( \sin 4x+\sin 2x \right)+\sin 3x} \\

& LHS=\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\

\end{align}\]

Take \[\left( \cos 3x \right)\]common from the numerator and \[\left( \sin 3x \right)\]from the denominator.

\[=\dfrac{\cos 3x\left[ 2\cos x+1 \right]}{\sin 3x\left[ 2\cos x+1 \right]}\]

Cancel out \[\left( 2\cos x+1 \right)\] from the numerator and denominator.

\[\therefore LHS=\dfrac{\cos 3x}{\sin 3x}\]

We know that, \[\dfrac{\cos x}{\sin x}=\cot x\]

Hence, \[\dfrac{\cos 3x}{\sin 3x}=\cot 3x\].

\[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]

\[\therefore \]LHS = RHS

Hence proved.

Note: Remember the basic trigonometric identities like \[\left( \sin a+\sin b \right)\] and \[\left( \cos a+\cos b \right)\] which we have used to solve this expression. Trigonometric identities are an important section in maths. Just apply the formula and simplify it to get the required answer.

“Complete step-by-step answer:”

We have been given the expression, \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\].

Let us consider the LHS of the expression.

LHS = \[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}\].

We know the basic trigonometric identities,

\[\begin{align}

& \cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

& \sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) \\

\end{align}\]

Let us take \[\left( \cos 4x+\cos 2x \right)\] from the numerator and apply the trigonometric identity.

\[\therefore \cos 4x+\cos 2x=2\cos \left( \dfrac{4x+2x}{2} \right)\cos \left( \dfrac{4x-2x}{2} \right)\]

\[\begin{align}

& =2\cos \left( \dfrac{6x}{2} \right)\cos \left( \dfrac{2x}{2} \right) \\

& =2\cos 3x\cos x \\

\end{align}\]

Now let us substitute the values of \[\left( \cos 4x+\cos 2x \right)\] and \[\left( \sin 4x+\sin 2x \right)\] in the LHS.

\[\begin{align}

& LHS=\dfrac{\left( \cos 4x+\cos 2x \right)+\cos 3x}{\left( \sin 4x+\sin 2x \right)+\sin 3x} \\

& LHS=\dfrac{2\cos 3x\cos x+\cos 3x}{2\sin 3x\cos x+\sin 3x} \\

\end{align}\]

Take \[\left( \cos 3x \right)\]common from the numerator and \[\left( \sin 3x \right)\]from the denominator.

\[=\dfrac{\cos 3x\left[ 2\cos x+1 \right]}{\sin 3x\left[ 2\cos x+1 \right]}\]

Cancel out \[\left( 2\cos x+1 \right)\] from the numerator and denominator.

\[\therefore LHS=\dfrac{\cos 3x}{\sin 3x}\]

We know that, \[\dfrac{\cos x}{\sin x}=\cot x\]

Hence, \[\dfrac{\cos 3x}{\sin 3x}=\cot 3x\].

\[\dfrac{\cos 4x+\cos 3x+\cos 2x}{\sin 4x+\sin 3x+\sin 2x}=\cot 3x\]

\[\therefore \]LHS = RHS

Hence proved.

Note: Remember the basic trigonometric identities like \[\left( \sin a+\sin b \right)\] and \[\left( \cos a+\cos b \right)\] which we have used to solve this expression. Trigonometric identities are an important section in maths. Just apply the formula and simplify it to get the required answer.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you graph the function fx 4x class 9 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE