Answer
Verified
421.2k+ views
Hint: Initially, define the L.H.S part and R.H.S part of the given expression. Then, consider L.H.S part and simplify it by using the trigonometric formulas along with algebraic identities. Then, check whether the L.H.S part is similar to the R.H.S part or not. If it is equal then, the given equation will get proved.
Complete step-by-step answer:
Given expression is:
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $
R.H.S = $ 1 + \sec A\cos ecA $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $----- (2)
Using trigonometric formula, we know that:
\[ \Rightarrow \]$ \tan A = \dfrac{{\sin A}}{{\cos A}} $----- (3)
\[ \Rightarrow \]$ \cot A = \dfrac{{\cos A}}{{\sin A}} $----- (4)
Substitute equation (3) and (4) into equation (2), and we get:
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} $
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{\dfrac{{co\operatorname{s} A - \sin A}}{{co\operatorname{s} A}}}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} + \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A - \sin A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} - \dfrac{{{{\cos }^2}A}}{{\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} $ ----- (5)
Using Algebraic Identities, $ {a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}) $ in equation (5), we get:
\[ \Rightarrow \]$ \dfrac{{(\sin A - \cos A)({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A}} $----- (6)
Using Trigonometric Identities: $ {\sin ^2}A + {\cos ^2}A = 1 $ in equation (6), we get:
\[ \Rightarrow \]$ \dfrac{{(1 + \sin A\cos A)}}{{\cos A\sin A}} $ ----- (7)
Using Trigonometric formula: $ \dfrac{1}{{\cos A}} = \sec A, $ $ \dfrac{1}{{\sin A}} = \cos ecA $ in equation (7), we get:
\[ \Rightarrow \]$ \sec A\cos ecA + 1 $ = R.H.S ----- (8)
It is clear from equation (2) and (8) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $
Given expression is:
\[ \Rightarrow \] $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $
R.H.S = $ 2{\sec ^2}A $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $----- (2)
Taking L.C.M of equation (2), and simplifying it, we get:
\[ \Rightarrow \]$ \dfrac{{\cos ecA\left( {\cos ecA + 1} \right) + \cos ecA\left( {\cos ecA - 1} \right)}}{{\left( {\cos ecA - 1} \right)\left( {\cos ecA + 1} \right)}} $
Using Algebraic Identities, $ {a^2} - {b^2} = (a - b)(a + b) $ in above expression, we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{\cos e{c^2}A - 1}}$ ----- (3)
Using Trigonometric formula:
\[ \Rightarrow \]$ \dfrac{1}{{\sin A}} = \cos ecA $ and $\cos e{c^2}A - 1 = {\cot ^2} A$ in equation (3), we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{{{\cot }^2}A}} $
\[ \Rightarrow \]\[ \dfrac{{\dfrac{2}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}}} = \dfrac{2}{{{{\sin }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{co{\operatorname{s} ^2}A}}\]
\[ \to \dfrac{2}{{co{\operatorname{s} ^2}A}} = 2{\sec ^2}A\] ----- (4)
It is clear from equation (2) and (4) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $
Note: In conclusion always try to convert any given trigonometric expression into basic ‘sin’ and ‘cos’ terms and using algebraic identities formula, it can be easily solved. Whenever the ‘tan’ or ‘cot’ term is given in the question always try to convert it into ‘sin’ and ‘cos’ terms.
Complete step-by-step answer:
Given expression is:
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $
R.H.S = $ 1 + \sec A\cos ecA $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} $----- (2)
Using trigonometric formula, we know that:
\[ \Rightarrow \]$ \tan A = \dfrac{{\sin A}}{{\cos A}} $----- (3)
\[ \Rightarrow \]$ \cot A = \dfrac{{\cos A}}{{\sin A}} $----- (4)
Substitute equation (3) and (4) into equation (2), and we get:
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{1 - \dfrac{{\sin A}}{{\cos A}}}} $
\[ \Rightarrow \]$ \dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}} + \dfrac{{\dfrac{{\cos A}}{{\sin A}}}}{{\dfrac{{co\operatorname{s} A - \sin A}}{{co\operatorname{s} A}}}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} + \dfrac{{{{\cos }^2}A}}{{\sin A(\cos A - \sin A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^2}A}}{{\cos A(\sin A - \cos A)}} - \dfrac{{{{\cos }^2}A}}{{\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} - \dfrac{{{{\cos }^3}A}}{{\sin A\cos A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{{{\sin }^3}A - {{\cos }^3}A}}{{\cos A\sin A(\sin A - \cos A)}} $ ----- (5)
Using Algebraic Identities, $ {a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}) $ in equation (5), we get:
\[ \Rightarrow \]$ \dfrac{{(\sin A - \cos A)({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A(\sin A - \cos A)}} $
\[ \Rightarrow \]$ \dfrac{{({{\sin }^2}A + \sin A\cos A + {{\cos }^2}A)}}{{\cos A\sin A}} $----- (6)
Using Trigonometric Identities: $ {\sin ^2}A + {\cos ^2}A = 1 $ in equation (6), we get:
\[ \Rightarrow \]$ \dfrac{{(1 + \sin A\cos A)}}{{\cos A\sin A}} $ ----- (7)
Using Trigonometric formula: $ \dfrac{1}{{\cos A}} = \sec A, $ $ \dfrac{1}{{\sin A}} = \cos ecA $ in equation (7), we get:
\[ \Rightarrow \]$ \sec A\cos ecA + 1 $ = R.H.S ----- (8)
It is clear from equation (2) and (8) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\tan A}}{{1 - \cot A}} + \dfrac{{\cot A}}{{1 - \tan A}} = 1 + \sec A\cos ecA $
Given expression is:
\[ \Rightarrow \] $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $----- (1)
From equation (1),
L.H.S = $ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $
R.H.S = $ 2{\sec ^2}A $
Consider the left hand side of the given expression ‘L.H.S’,
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} $----- (2)
Taking L.C.M of equation (2), and simplifying it, we get:
\[ \Rightarrow \]$ \dfrac{{\cos ecA\left( {\cos ecA + 1} \right) + \cos ecA\left( {\cos ecA - 1} \right)}}{{\left( {\cos ecA - 1} \right)\left( {\cos ecA + 1} \right)}} $
Using Algebraic Identities, $ {a^2} - {b^2} = (a - b)(a + b) $ in above expression, we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{\cos e{c^2}A - 1}}$ ----- (3)
Using Trigonometric formula:
\[ \Rightarrow \]$ \dfrac{1}{{\sin A}} = \cos ecA $ and $\cos e{c^2}A - 1 = {\cot ^2} A$ in equation (3), we get:
\[ \Rightarrow \]$ \dfrac{{2\cos e{c^2}A}}{{{{\cot }^2}A}} $
\[ \Rightarrow \]\[ \dfrac{{\dfrac{2}{{{{\sin }^2}A}}}}{{\dfrac{{{{\cos }^2}A}}{{{{\sin }^2}A}}}} = \dfrac{2}{{{{\sin }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{co{\operatorname{s} ^2}A}}\]
\[ \to \dfrac{2}{{co{\operatorname{s} ^2}A}} = 2{\sec ^2}A\] ----- (4)
It is clear from equation (2) and (4) that
L.H.S = R.H.S
\[ \Rightarrow \]$ \dfrac{{\cos ecA}}{{\left( {\cos ecA - 1} \right)}} + \dfrac{{\cos ecA}}{{\left( {\cos ecA + 1} \right)}} = 2{\sec ^2}A $
Note: In conclusion always try to convert any given trigonometric expression into basic ‘sin’ and ‘cos’ terms and using algebraic identities formula, it can be easily solved. Whenever the ‘tan’ or ‘cot’ term is given in the question always try to convert it into ‘sin’ and ‘cos’ terms.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE