
Prove that \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)=\dfrac{\pi }{4}\]
Answer
555k+ views
Hint: First expand the given expression in left hand side using the formula for expansion of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\] and \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\] now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step by step answer:
Now considering the L.H.S
L.H.S = \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
The first two terms are in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
We know that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{3}{4}\], \[y=\dfrac{3}{5}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{5} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{27}{20}}{\dfrac{11}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{27}{11} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\]
We know that \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{27}{11} \right)-\left( \dfrac{8}{19} \right)}{1+\left( \dfrac{27}{11} \right)\left( \dfrac{8}{19} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{20}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
= R.H.S
Note: Usage of the formulas \[\left( {{\tan }^{-1}}x+{{\tan }^{-1}}y \right)\] and \[\left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)\] should be done carefully to simplify the given question and application of the formulas in correct way is necessary.
Complete step by step answer:
Now considering the L.H.S
L.H.S = \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
The first two terms are in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
We know that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{3}{4}\], \[y=\dfrac{3}{5}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{5} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{27}{20}}{\dfrac{11}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{27}{11} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\]
We know that \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{27}{11} \right)-\left( \dfrac{8}{19} \right)}{1+\left( \dfrac{27}{11} \right)\left( \dfrac{8}{19} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{20}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
= R.H.S
Note: Usage of the formulas \[\left( {{\tan }^{-1}}x+{{\tan }^{-1}}y \right)\] and \[\left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)\] should be done carefully to simplify the given question and application of the formulas in correct way is necessary.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Valmiki National Park?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

