
Prove that \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)=\dfrac{\pi }{4}\]
Answer
546.6k+ views
Hint: First expand the given expression in left hand side using the formula for expansion of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\] and \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\] now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step by step answer:
Now considering the L.H.S
L.H.S = \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
The first two terms are in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
We know that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{3}{4}\], \[y=\dfrac{3}{5}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{5} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{27}{20}}{\dfrac{11}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{27}{11} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\]
We know that \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{27}{11} \right)-\left( \dfrac{8}{19} \right)}{1+\left( \dfrac{27}{11} \right)\left( \dfrac{8}{19} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{20}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
= R.H.S
Note: Usage of the formulas \[\left( {{\tan }^{-1}}x+{{\tan }^{-1}}y \right)\] and \[\left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)\] should be done carefully to simplify the given question and application of the formulas in correct way is necessary.
Complete step by step answer:
Now considering the L.H.S
L.H.S = \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
The first two terms are in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
We know that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{3}{4}\], \[y=\dfrac{3}{5}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{5} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{27}{20}}{\dfrac{11}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{27}{11} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\]
We know that \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{27}{11} \right)-\left( \dfrac{8}{19} \right)}{1+\left( \dfrac{27}{11} \right)\left( \dfrac{8}{19} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{20}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
= R.H.S
Note: Usage of the formulas \[\left( {{\tan }^{-1}}x+{{\tan }^{-1}}y \right)\] and \[\left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)\] should be done carefully to simplify the given question and application of the formulas in correct way is necessary.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

