Answer
Verified
445.2k+ views
Hint: First expand the given expression in left hand side using the formula for expansion of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\] and \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\] now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step by step answer:
Now considering the L.H.S
L.H.S = \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
The first two terms are in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
We know that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{3}{4}\], \[y=\dfrac{3}{5}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{5} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{27}{20}}{\dfrac{11}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{27}{11} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\]
We know that \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{27}{11} \right)-\left( \dfrac{8}{19} \right)}{1+\left( \dfrac{27}{11} \right)\left( \dfrac{8}{19} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{20}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
= R.H.S
Note: Usage of the formulas \[\left( {{\tan }^{-1}}x+{{\tan }^{-1}}y \right)\] and \[\left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)\] should be done carefully to simplify the given question and application of the formulas in correct way is necessary.
Complete step by step answer:
Now considering the L.H.S
L.H.S = \[{{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
The first two terms are in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
We know that
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{3}{4}\], \[y=\dfrac{3}{5}\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{5}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{5} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{15+12}{20}}{\dfrac{20-9}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{27}{20}}{\dfrac{11}{20}} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{27}{11} \right)-{{\tan }^{-1}}\left( \dfrac{8}{19} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form \[{{\tan }^{-1}}x-{{\tan }^{-1}}y\]
We know that \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{27}{11} \right)-\left( \dfrac{8}{19} \right)}{1+\left( \dfrac{27}{11} \right)\left( \dfrac{8}{19} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{513-88}{209}}{\dfrac{209+216}{20}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{425}{209}}{\dfrac{425}{209}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
= R.H.S
Note: Usage of the formulas \[\left( {{\tan }^{-1}}x+{{\tan }^{-1}}y \right)\] and \[\left( {{\tan }^{-1}}x-{{\tan }^{-1}}y \right)\] should be done carefully to simplify the given question and application of the formulas in correct way is necessary.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE