
Prove that:
${\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{co}}{{\text{t}}^{ - 1}}({\text{a}} + 1) = {\text{ta}}{{\text{n}}^{ - 1}}({{\text{a}}^2} + {\text{a}} + 1).$
Answer
605.1k+ views
Hint: In this type of question, where we have to prove LHS=RHS for the given inverse trigonometric function. The first step is to convert the expression given in LHS to inverse tangent function if all the expressions are either inverse tangent or inverse cotangent function. Then solve the LHS and it is equal to RHS.
Complete step-by-step solution -
In the given question, we have to prove the given expression. So, the usual approach is to first consider the term given in Left Hand Side(LHS) and simplify it in such a way that it becomes equal to the expression given in Right Hand Side(RHS).
So, we will first consider LHS:
In the question, all the functions are either inverse tangent or inverse cotangent functions. So, we will convert all the functions in LHS to inverse tangent functions.
We know that:
${\text{ta}}{{\text{n}}^{ - 1}}x = {\text{co}}{{\text{t}}^{ - 1}}\dfrac{1}{x};{\text{x > 0}}$
$\therefore $ ${\text{co}}{{\text{t}}^{ - 1}}(a + 1) = {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}});{\text{a + 1 > 0}}$ .
Therefore, the expression in LHS is written as:
${\text{ta}}{{\text{n}}^{ - 1}}a + {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}}).$
Also, we know that:
${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}} + {\text{ta}}{{\text{n}}^{ - 1}}{\text{y}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}} \right);{\text{xy < 1}}$
Therefore, we can write:
\[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{{\text{a}}^2} + {\text{a + 1}}}}{{{\text{a + 1 - a}}}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {{{\text{a}}^2} + {\text{a}} + 1} \right);\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\]
This expression in LHS is the same as that of the expression in RHS.
Therefore, LHS=RHS proved.
Note: In this type of question, the important step is to change the left hand side expression in terms of a single inverse trigonometric function and then use the inverse trigonometric identities to make the expression in LHS equal to expression in RHS. The condition \[\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\] must be satisfied if we are applying the formula \[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right)\] .
Complete step-by-step solution -
In the given question, we have to prove the given expression. So, the usual approach is to first consider the term given in Left Hand Side(LHS) and simplify it in such a way that it becomes equal to the expression given in Right Hand Side(RHS).
So, we will first consider LHS:
In the question, all the functions are either inverse tangent or inverse cotangent functions. So, we will convert all the functions in LHS to inverse tangent functions.
We know that:
${\text{ta}}{{\text{n}}^{ - 1}}x = {\text{co}}{{\text{t}}^{ - 1}}\dfrac{1}{x};{\text{x > 0}}$
$\therefore $ ${\text{co}}{{\text{t}}^{ - 1}}(a + 1) = {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}});{\text{a + 1 > 0}}$ .
Therefore, the expression in LHS is written as:
${\text{ta}}{{\text{n}}^{ - 1}}a + {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}}).$
Also, we know that:
${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}} + {\text{ta}}{{\text{n}}^{ - 1}}{\text{y}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}} \right);{\text{xy < 1}}$
Therefore, we can write:
\[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{{\text{a}}^2} + {\text{a + 1}}}}{{{\text{a + 1 - a}}}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {{{\text{a}}^2} + {\text{a}} + 1} \right);\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\]
This expression in LHS is the same as that of the expression in RHS.
Therefore, LHS=RHS proved.
Note: In this type of question, the important step is to change the left hand side expression in terms of a single inverse trigonometric function and then use the inverse trigonometric identities to make the expression in LHS equal to expression in RHS. The condition \[\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\] must be satisfied if we are applying the formula \[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right)\] .
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

