Prove that:
${\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{co}}{{\text{t}}^{ - 1}}({\text{a}} + 1) = {\text{ta}}{{\text{n}}^{ - 1}}({{\text{a}}^2} + {\text{a}} + 1).$
Answer
363.3k+ views
Hint: In this type of question, where we have to prove LHS=RHS for the given inverse trigonometric function. The first step is to convert the expression given in LHS to inverse tangent function if all the expressions are either inverse tangent or inverse cotangent function. Then solve the LHS and it is equal to RHS.
Complete step-by-step solution -
In the given question, we have to prove the given expression. So, the usual approach is to first consider the term given in Left Hand Side(LHS) and simplify it in such a way that it becomes equal to the expression given in Right Hand Side(RHS).
So, we will first consider LHS:
In the question, all the functions are either inverse tangent or inverse cotangent functions. So, we will convert all the functions in LHS to inverse tangent functions.
We know that:
${\text{ta}}{{\text{n}}^{ - 1}}x = {\text{co}}{{\text{t}}^{ - 1}}\dfrac{1}{x};{\text{x > 0}}$
$\therefore $ ${\text{co}}{{\text{t}}^{ - 1}}(a + 1) = {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}});{\text{a + 1 > 0}}$ .
Therefore, the expression in LHS is written as:
${\text{ta}}{{\text{n}}^{ - 1}}a + {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}}).$
Also, we know that:
${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}} + {\text{ta}}{{\text{n}}^{ - 1}}{\text{y}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}} \right);{\text{xy < 1}}$
Therefore, we can write:
\[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{{\text{a}}^2} + {\text{a + 1}}}}{{{\text{a + 1 - a}}}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {{{\text{a}}^2} + {\text{a}} + 1} \right);\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\]
This expression in LHS is the same as that of the expression in RHS.
Therefore, LHS=RHS proved.
Note: In this type of question, the important step is to change the left hand side expression in terms of a single inverse trigonometric function and then use the inverse trigonometric identities to make the expression in LHS equal to expression in RHS. The condition \[\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\] must be satisfied if we are applying the formula \[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right)\] .
Complete step-by-step solution -
In the given question, we have to prove the given expression. So, the usual approach is to first consider the term given in Left Hand Side(LHS) and simplify it in such a way that it becomes equal to the expression given in Right Hand Side(RHS).
So, we will first consider LHS:
In the question, all the functions are either inverse tangent or inverse cotangent functions. So, we will convert all the functions in LHS to inverse tangent functions.
We know that:
${\text{ta}}{{\text{n}}^{ - 1}}x = {\text{co}}{{\text{t}}^{ - 1}}\dfrac{1}{x};{\text{x > 0}}$
$\therefore $ ${\text{co}}{{\text{t}}^{ - 1}}(a + 1) = {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}});{\text{a + 1 > 0}}$ .
Therefore, the expression in LHS is written as:
${\text{ta}}{{\text{n}}^{ - 1}}a + {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}}).$
Also, we know that:
${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}} + {\text{ta}}{{\text{n}}^{ - 1}}{\text{y}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}} \right);{\text{xy < 1}}$
Therefore, we can write:
\[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{{\text{a}}^2} + {\text{a + 1}}}}{{{\text{a + 1 - a}}}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {{{\text{a}}^2} + {\text{a}} + 1} \right);\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\]
This expression in LHS is the same as that of the expression in RHS.
Therefore, LHS=RHS proved.
Note: In this type of question, the important step is to change the left hand side expression in terms of a single inverse trigonometric function and then use the inverse trigonometric identities to make the expression in LHS equal to expression in RHS. The condition \[\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\] must be satisfied if we are applying the formula \[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right)\] .
Last updated date: 03rd Oct 2023
•
Total views: 363.3k
•
Views today: 10.63k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Is current density a scalar or a vector quantity class 12 physics JEE_Main

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE
