# Prove that:

${\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{co}}{{\text{t}}^{ - 1}}({\text{a}} + 1) = {\text{ta}}{{\text{n}}^{ - 1}}({{\text{a}}^2} + {\text{a}} + 1).$

Last updated date: 19th Mar 2023

•

Total views: 305.1k

•

Views today: 2.85k

Answer

Verified

305.1k+ views

Hint: In this type of question, where we have to prove LHS=RHS for the given inverse trigonometric function. The first step is to convert the expression given in LHS to inverse tangent function if all the expressions are either inverse tangent or inverse cotangent function. Then solve the LHS and it is equal to RHS.

In the given question, we have to prove the given expression. So, the usual approach is to first consider the term given in Left Hand Side(LHS) and simplify it in such a way that it becomes equal to the expression given in Right Hand Side(RHS).

So, we will first consider LHS:

In the question, all the functions are either inverse tangent or inverse cotangent functions. So, we will convert all the functions in LHS to inverse tangent functions.

We know that:

${\text{ta}}{{\text{n}}^{ - 1}}x = {\text{co}}{{\text{t}}^{ - 1}}\dfrac{1}{x};{\text{x > 0}}$

$\therefore $ ${\text{co}}{{\text{t}}^{ - 1}}(a + 1) = {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}});{\text{a + 1 > 0}}$ .

Therefore, the expression in LHS is written as:

${\text{ta}}{{\text{n}}^{ - 1}}a + {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}}).$

Also, we know that:

${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}} + {\text{ta}}{{\text{n}}^{ - 1}}{\text{y}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}} \right);{\text{xy < 1}}$

Therefore, we can write:

\[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{{\text{a}}^2} + {\text{a + 1}}}}{{{\text{a + 1 - a}}}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {{{\text{a}}^2} + {\text{a}} + 1} \right);\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\]

This expression in LHS is the same as that of the expression in RHS.

Therefore, LHS=RHS proved.

Note: In this type of question, the important step is to change the left hand side expression in terms of a single inverse trigonometric function and then use the inverse trigonometric identities to make the expression in LHS equal to expression in RHS. The condition \[\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\] must be satisfied if we are applying the formula \[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right)\] .

__Complete step-by-step solution -__In the given question, we have to prove the given expression. So, the usual approach is to first consider the term given in Left Hand Side(LHS) and simplify it in such a way that it becomes equal to the expression given in Right Hand Side(RHS).

So, we will first consider LHS:

In the question, all the functions are either inverse tangent or inverse cotangent functions. So, we will convert all the functions in LHS to inverse tangent functions.

We know that:

${\text{ta}}{{\text{n}}^{ - 1}}x = {\text{co}}{{\text{t}}^{ - 1}}\dfrac{1}{x};{\text{x > 0}}$

$\therefore $ ${\text{co}}{{\text{t}}^{ - 1}}(a + 1) = {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}});{\text{a + 1 > 0}}$ .

Therefore, the expression in LHS is written as:

${\text{ta}}{{\text{n}}^{ - 1}}a + {\text{ta}}{{\text{n}}^{ - 1}}(\dfrac{1}{{a + 1}}).$

Also, we know that:

${\text{ta}}{{\text{n}}^{ - 1}}{\text{x}} + {\text{ta}}{{\text{n}}^{ - 1}}{\text{y}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{x + y}}}}{{1 - {\text{xy}}}}} \right);{\text{xy < 1}}$

Therefore, we can write:

\[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{{\text{a}}^2} + {\text{a + 1}}}}{{{\text{a + 1 - a}}}}} \right) = {\text{ta}}{{\text{n}}^{ - 1}}\left( {{{\text{a}}^2} + {\text{a}} + 1} \right);\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\]

This expression in LHS is the same as that of the expression in RHS.

Therefore, LHS=RHS proved.

Note: In this type of question, the important step is to change the left hand side expression in terms of a single inverse trigonometric function and then use the inverse trigonometric identities to make the expression in LHS equal to expression in RHS. The condition \[\dfrac{{\text{a}}}{{{\text{a + 1}}}}{\text{ < 1}}\] must be satisfied if we are applying the formula \[{\text{ta}}{{\text{n}}^{ - 1}}{\text{a}} + {\text{ta}}{{\text{n}}^{ - 1}}\dfrac{1}{{{\text{a}} + 1}} = {\text{ta}}{{\text{n}}^{ - 1}}\left( {\dfrac{{{\text{a + }}\dfrac{1}{{{\text{a + 1}}}}}}{{1 - (\dfrac{{\text{a}}}{{{\text{a + 1}}}})}}} \right)\] .

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?