# Prove that $\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}\left( \begin{matrix}

n \\

k \\

\end{matrix} \right)}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\left( \begin{matrix}

m \\

k \\

\end{matrix} \right)\dfrac{1}{k+n+1}}$

Answer

Verified

363.6k+ views

Hint: Write expression of ${{\left( 1-x \right)}^{n}}\And {{\left( 1-x \right)}^{m}}$ and then apply integral to both sides.

Here, we have to prove

$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{C}_{k}}}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{C}_{k}}\dfrac{1}{k+n+1}}.........\left( 1 \right)$

Now, we cannot concert LHS to RHS directly, so basically we need to simplify LHS and RHS both for proving.

Let us simplifying LHS part:

\[LHS=\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}}\]

Writing the above summation to series as

\[\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}=\dfrac{{}^{n}{{c}_{0}}}{\left( m+1 \right)}-\dfrac{{}^{n}{{c}_{1}}}{\left( m+2 \right)}+\dfrac{{}^{n}{{c}_{2}}}{\left( m+3 \right)}}+.......{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}........\left( 2 \right)\]

Now we can observe that ${}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.......{}^{n}{{c}_{n-1}},{}^{n}{{c}_{n}}$ are coefficient of ${{x}^{0}},{{x}^{1}},{{x}^{2}}.......{{x}^{n-1}},{{x}^{n}}\text{ in }{{\left( 1+x \right)}^{n}}$ as expansion of it can be written as;

${{\left( 1+x \right)}^{n}}={}^{n}{{c}_{0}}+{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}+.....{}^{n}{{c}_{n}}{{x}^{n}}$

As, series of equation $\left( 2 \right)$ has alternative positive and negative signs, means we need to relate the series by expansion of ${{\left( 1-x \right)}^{n}}$ which can be written as

\[{{\left( 1-x \right)}^{n}}={}^{n}{{c}_{0}}-{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}-{}^{n}{{c}_{3}}{{x}^{3}}+.........+{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n}}\]

Let us multiply by ${{x}^{m}}$ to both sides of the above series

${{\left( 1-x \right)}^{n}}{{x}^{m}}={}^{n}{{c}_{0}}{{x}^{m}}-{}^{n}{{c}_{1}}{{x}^{m+1}}+{}^{n}{{c}_{2}}{{x}^{m+2}}+......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n+m}}$

We have \[\int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}}\]

Let us integrate the above series from $0\text{ to 1}$ we get;

$\begin{align}

& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\int_{0}^{1}{{}^{n}{{c}_{0}}{{x}^{m}}dx}-\int_{0}^{1}{{}^{n}{{c}_{1}}{{x}^{m+1}}dx}+\int_{0}^{1}{{}^{n}{{c}_{2}}{{x}^{m+2}}dx}+.......{{\left( -1 \right)}^{n}}\int_{0}^{1}{{}^{n}{{c}_{n}}{{x}^{m+n}}dx} \\

& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}={}^{n}{{c}_{0}}\dfrac{{{x}^{m+1}}}{m+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.-{}^{n}{{c}_{1}}\dfrac{{{x}^{m+2}}}{m+2}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.+{}^{n}{{c}_{2}}\dfrac{{{x}^{m+3}}}{m+3}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.+.......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}\dfrac{{{x}^{m+n+1}}}{m+n+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right. \\

\end{align}$

Applying the limits, we get;

$\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\dfrac{{}^{n}{{c}_{0}}}{m+1}-\dfrac{{}^{n}{{c}_{1}}}{m+2}+\dfrac{{}^{n}{{c}_{2}}}{m+3}+........{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}$

Hence, LHS part can be written as;

$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx........\left( 3 \right)}}$

Now, let us simplify the RHS part in a similar way. Here we have to take expansion of ${{\left( 1-x \right)}^{m}}$ as given summation can be expressed as:

\[\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{\left( k+n+1 \right)}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}.........{{\left( -1 \right)}^{m-1}}\dfrac{{}^{m}{{C}_{m-1}}}{n+m}+{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}}\]

${}^{m}{{c}_{0}},-{}^{m}{{c}_{1}},{}^{m}{{c}_{2}},-{}^{m}{{c}_{3}}...........$ are the coefficients of ${{\left( 1-x \right)}^{m}}$ . Expansion of ${{\left( 1-x \right)}^{m}}$can be written as;

${{\left( 1-x \right)}^{m}}={}^{m}{{c}_{0}}-{}^{m}{{c}_{1}}x+{}^{m}{{c}_{2}}{{x}^{2}}-{}^{m}{{c}_{3}}{{x}^{3}}+........{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m}}$

Multiplying by ${{x}^{n}}$ to both sides of the above expansion, we get

${{\left( 1-x \right)}^{m}}{{x}^{n}}={}^{m}{{c}_{0}}{{x}^{n}}-{}^{m}{{c}_{1}}{{x}^{n+1}}+{}^{m}{{c}_{2}}{{x}^{n+2}}+.....{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m+n-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}$

Integrating the above series to both sides from the limit $0\text{ to }1$

$\int\limits_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{}^{m}{{c}_{0}}{{x}^{n}}dx-}\int_{0}^{1}{{}^{m}{{c}_{1}}{{x}^{n+1}}dx+\int_{0}^{1}{{}^{m}{{c}_{2}}{{x}^{n+2}}dx+.........\int_{0}^{1}{{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}dx............\left( 4 \right)}}}$

We have

$\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$

Using the above formula in the equation $\left( 4 \right)$

$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}-\dfrac{{}^{m}{{c}_{0}}{{x}^{n+1}}}{n+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix}- \right.\dfrac{{}^{m}{{c}_{1}}{{x}^{n+2}}}{n+2}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}{{x}^{n+m+1}}}{n+m+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.$

Applying the limits, we get

$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}$

Rewriting the above equation in summation form we will get RHS part as

$\sum\limits_{k=0}^{k=m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{n+k+1}}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}......\left( 5 \right)$

We have a property of definite integral as;

$\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$

We can use the above property with equation $\left( 5 \right)$ as

$\begin{align}

& \sum\limits_{k=0}^{k-m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+k+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{{\left( 1-\left( 0+1-x \right) \right)}^{m}}{{\left( 0+1-x \right)}^{n}}dx}} \\

& =\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx} \\

\end{align}$

Therefore,

$\sum\limits_{k=0}^{k=m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+m+1}=\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx............\left( 6 \right)}}$

Now, comparing the equation $\left( 3 \right)\And \left( 6 \right)$ ,the RHS part of both the equations are equal, hence, the LHS part of the equation should also be equal.

$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=}\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}\dfrac{1}{k+n+1}}$

Hence proved.

Note: No need to solve $\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx\text{ or }}\int_{0}^{1}{{{x}^{n}}{{\left( 1-x \right)}^{m}}}$ further. As we can use the property of definite integral. One can waste his/her time with the integral part.

One can think why integration is used, the reason is simple terms $m+1,m+2.....m+n+1\text{ or }n+1,n+2,....m+n+1$ are in denominator and $\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$ , hence we need use integration only by observation of the given series. If the terms $m+1,m+2.....m+n+1\text{ or }n,n+1,n+2.....n+m+1$ were in multiplication with the terms ${}^{m}{{c}_{0}},{}^{m}{{c}_{1}},{}^{m}{{c}_{2}}......\text{ or }{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.....{}^{n}{{c}_{n}}$ then we need to use concept of differentiation. Hence observation is the key point of this question.

Another approach would be that we can take expansion of ${{\left( 1+x \right)}^{n}}\text{ or }{{\left( 1+x \right)}^{m}}$ and multiply it by ${{x}^{m}}\text{ or }{{x}^{n}}$ respectively, then integration the series from $-1\text{ to }0$ to get the required given series.

Here, we have to prove

$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{C}_{k}}}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{C}_{k}}\dfrac{1}{k+n+1}}.........\left( 1 \right)$

Now, we cannot concert LHS to RHS directly, so basically we need to simplify LHS and RHS both for proving.

Let us simplifying LHS part:

\[LHS=\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}}\]

Writing the above summation to series as

\[\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}=\dfrac{{}^{n}{{c}_{0}}}{\left( m+1 \right)}-\dfrac{{}^{n}{{c}_{1}}}{\left( m+2 \right)}+\dfrac{{}^{n}{{c}_{2}}}{\left( m+3 \right)}}+.......{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}........\left( 2 \right)\]

Now we can observe that ${}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.......{}^{n}{{c}_{n-1}},{}^{n}{{c}_{n}}$ are coefficient of ${{x}^{0}},{{x}^{1}},{{x}^{2}}.......{{x}^{n-1}},{{x}^{n}}\text{ in }{{\left( 1+x \right)}^{n}}$ as expansion of it can be written as;

${{\left( 1+x \right)}^{n}}={}^{n}{{c}_{0}}+{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}+.....{}^{n}{{c}_{n}}{{x}^{n}}$

As, series of equation $\left( 2 \right)$ has alternative positive and negative signs, means we need to relate the series by expansion of ${{\left( 1-x \right)}^{n}}$ which can be written as

\[{{\left( 1-x \right)}^{n}}={}^{n}{{c}_{0}}-{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}-{}^{n}{{c}_{3}}{{x}^{3}}+.........+{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n}}\]

Let us multiply by ${{x}^{m}}$ to both sides of the above series

${{\left( 1-x \right)}^{n}}{{x}^{m}}={}^{n}{{c}_{0}}{{x}^{m}}-{}^{n}{{c}_{1}}{{x}^{m+1}}+{}^{n}{{c}_{2}}{{x}^{m+2}}+......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n+m}}$

We have \[\int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}}\]

Let us integrate the above series from $0\text{ to 1}$ we get;

$\begin{align}

& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\int_{0}^{1}{{}^{n}{{c}_{0}}{{x}^{m}}dx}-\int_{0}^{1}{{}^{n}{{c}_{1}}{{x}^{m+1}}dx}+\int_{0}^{1}{{}^{n}{{c}_{2}}{{x}^{m+2}}dx}+.......{{\left( -1 \right)}^{n}}\int_{0}^{1}{{}^{n}{{c}_{n}}{{x}^{m+n}}dx} \\

& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}={}^{n}{{c}_{0}}\dfrac{{{x}^{m+1}}}{m+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.-{}^{n}{{c}_{1}}\dfrac{{{x}^{m+2}}}{m+2}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.+{}^{n}{{c}_{2}}\dfrac{{{x}^{m+3}}}{m+3}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.+.......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}\dfrac{{{x}^{m+n+1}}}{m+n+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right. \\

\end{align}$

Applying the limits, we get;

$\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\dfrac{{}^{n}{{c}_{0}}}{m+1}-\dfrac{{}^{n}{{c}_{1}}}{m+2}+\dfrac{{}^{n}{{c}_{2}}}{m+3}+........{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}$

Hence, LHS part can be written as;

$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx........\left( 3 \right)}}$

Now, let us simplify the RHS part in a similar way. Here we have to take expansion of ${{\left( 1-x \right)}^{m}}$ as given summation can be expressed as:

\[\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{\left( k+n+1 \right)}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}.........{{\left( -1 \right)}^{m-1}}\dfrac{{}^{m}{{C}_{m-1}}}{n+m}+{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}}\]

${}^{m}{{c}_{0}},-{}^{m}{{c}_{1}},{}^{m}{{c}_{2}},-{}^{m}{{c}_{3}}...........$ are the coefficients of ${{\left( 1-x \right)}^{m}}$ . Expansion of ${{\left( 1-x \right)}^{m}}$can be written as;

${{\left( 1-x \right)}^{m}}={}^{m}{{c}_{0}}-{}^{m}{{c}_{1}}x+{}^{m}{{c}_{2}}{{x}^{2}}-{}^{m}{{c}_{3}}{{x}^{3}}+........{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m}}$

Multiplying by ${{x}^{n}}$ to both sides of the above expansion, we get

${{\left( 1-x \right)}^{m}}{{x}^{n}}={}^{m}{{c}_{0}}{{x}^{n}}-{}^{m}{{c}_{1}}{{x}^{n+1}}+{}^{m}{{c}_{2}}{{x}^{n+2}}+.....{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m+n-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}$

Integrating the above series to both sides from the limit $0\text{ to }1$

$\int\limits_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{}^{m}{{c}_{0}}{{x}^{n}}dx-}\int_{0}^{1}{{}^{m}{{c}_{1}}{{x}^{n+1}}dx+\int_{0}^{1}{{}^{m}{{c}_{2}}{{x}^{n+2}}dx+.........\int_{0}^{1}{{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}dx............\left( 4 \right)}}}$

We have

$\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$

Using the above formula in the equation $\left( 4 \right)$

$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}-\dfrac{{}^{m}{{c}_{0}}{{x}^{n+1}}}{n+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix}- \right.\dfrac{{}^{m}{{c}_{1}}{{x}^{n+2}}}{n+2}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}{{x}^{n+m+1}}}{n+m+1}\left| \begin{matrix}

1 \\

0 \\

\end{matrix} \right.$

Applying the limits, we get

$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}$

Rewriting the above equation in summation form we will get RHS part as

$\sum\limits_{k=0}^{k=m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{n+k+1}}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}......\left( 5 \right)$

We have a property of definite integral as;

$\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$

We can use the above property with equation $\left( 5 \right)$ as

$\begin{align}

& \sum\limits_{k=0}^{k-m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+k+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{{\left( 1-\left( 0+1-x \right) \right)}^{m}}{{\left( 0+1-x \right)}^{n}}dx}} \\

& =\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx} \\

\end{align}$

Therefore,

$\sum\limits_{k=0}^{k=m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+m+1}=\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx............\left( 6 \right)}}$

Now, comparing the equation $\left( 3 \right)\And \left( 6 \right)$ ,the RHS part of both the equations are equal, hence, the LHS part of the equation should also be equal.

$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=}\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}\dfrac{1}{k+n+1}}$

Hence proved.

Note: No need to solve $\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx\text{ or }}\int_{0}^{1}{{{x}^{n}}{{\left( 1-x \right)}^{m}}}$ further. As we can use the property of definite integral. One can waste his/her time with the integral part.

One can think why integration is used, the reason is simple terms $m+1,m+2.....m+n+1\text{ or }n+1,n+2,....m+n+1$ are in denominator and $\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$ , hence we need use integration only by observation of the given series. If the terms $m+1,m+2.....m+n+1\text{ or }n,n+1,n+2.....n+m+1$ were in multiplication with the terms ${}^{m}{{c}_{0}},{}^{m}{{c}_{1}},{}^{m}{{c}_{2}}......\text{ or }{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.....{}^{n}{{c}_{n}}$ then we need to use concept of differentiation. Hence observation is the key point of this question.

Another approach would be that we can take expansion of ${{\left( 1+x \right)}^{n}}\text{ or }{{\left( 1+x \right)}^{m}}$ and multiply it by ${{x}^{m}}\text{ or }{{x}^{n}}$ respectively, then integration the series from $-1\text{ to }0$ to get the required given series.

Last updated date: 25th Sep 2023

â€¢

Total views: 363.6k

â€¢

Views today: 10.63k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE