
Prove that \[{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}\], where \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]is the radius of the exterior circle on side A, B and C.
Answer
602.7k+ views
Hint: Use heron’s formula to solve. Multiply the radius of these circles considered to prove it. Find the radius of \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]. Prove the LHS by multiplying \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]..
Complete step-by-step answer:
Let us consider that \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]are radius of the circle, opposite to a, b and c of the triangle ABC.
Let the triangle be the area of the triangle ABC.
S is the sum of the length of the triangle ABC.
\[\therefore s=\dfrac{a+b+c}{2}\]
Radius of the triangle, \[r=\dfrac{area}{sum-opposite side}\]
\[\therefore \]radius of \[{{r}_{1}}=\dfrac{\Delta }{s-a}\]
Similarly, \[{{r}_{2}}=\dfrac{\Delta }{s-b}\]and \[{{r}_{3}}=\dfrac{\Delta }{s-c}\]
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\left( \dfrac{\Delta }{s-a} \right)\left( \dfrac{\Delta }{s-b} \right)\left( \dfrac{\Delta }{s-c} \right)\]
Where radius \[{{r}_{1}}\]is opposite to the side ‘a’ of \[\vartriangle ABC\]
radius \[{{r}_{2}}\]is opposite to the side ‘b’ of \[\vartriangle ABC\]
radius \[{{r}_{3}}\]is opposite to the side ‘c’ of \[\vartriangle ABC\]
\[\therefore {{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}}{\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(1)\]
By using, Heron’s formula, we can take the area of the triangle, when the length of all three sides of triangle are known:
\[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(2)\]
The figure shows the geometrical significance of \[\left( s-a \right),\left( s-b \right)\]and \[\left( s-c \right)\].
In equation (1) multiply the numerator & denominator by ‘s’.
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}\times s}{s\times \left( s-a \right)\left( s-b \right)\left( s-c \right)}-(3)\]
We know, \[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}\]
Squaring equation (2) on both sides
\[{{\Delta }^{2}}=s\left( s-a \right)\left( s-b \right)\left( s-c \right)-(4)\]
Substitute the value of (4) in (3)
\[=\dfrac{s{{\Delta }^{3}}}{{{\Delta }^{2}}}=s\Delta -(5)\]
Multiply numerator and denominator by ‘s’ in equation (5)
\[={{s}^{2}}\dfrac{\Delta }{s}\]
We know the radius in circle, r = a / (sum of lengths of triangle) = \[\dfrac{a}{s}\]
By substituting the same, we get
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}\].
Note: Remember to use heron’s formula to simplify equation (1).
Complete step-by-step answer:
Let us consider that \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\]are radius of the circle, opposite to a, b and c of the triangle ABC.
Let the triangle be the area of the triangle ABC.
S is the sum of the length of the triangle ABC.
\[\therefore s=\dfrac{a+b+c}{2}\]
Radius of the triangle, \[r=\dfrac{area}{sum-opposite side}\]
\[\therefore \]radius of \[{{r}_{1}}=\dfrac{\Delta }{s-a}\]
Similarly, \[{{r}_{2}}=\dfrac{\Delta }{s-b}\]and \[{{r}_{3}}=\dfrac{\Delta }{s-c}\]
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\left( \dfrac{\Delta }{s-a} \right)\left( \dfrac{\Delta }{s-b} \right)\left( \dfrac{\Delta }{s-c} \right)\]
Where radius \[{{r}_{1}}\]is opposite to the side ‘a’ of \[\vartriangle ABC\]
radius \[{{r}_{2}}\]is opposite to the side ‘b’ of \[\vartriangle ABC\]
radius \[{{r}_{3}}\]is opposite to the side ‘c’ of \[\vartriangle ABC\]
\[\therefore {{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}}{\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(1)\]
By using, Heron’s formula, we can take the area of the triangle, when the length of all three sides of triangle are known:
\[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(2)\]
The figure shows the geometrical significance of \[\left( s-a \right),\left( s-b \right)\]and \[\left( s-c \right)\].
In equation (1) multiply the numerator & denominator by ‘s’.
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}\times s}{s\times \left( s-a \right)\left( s-b \right)\left( s-c \right)}-(3)\]
We know, \[\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}\]
Squaring equation (2) on both sides
\[{{\Delta }^{2}}=s\left( s-a \right)\left( s-b \right)\left( s-c \right)-(4)\]
Substitute the value of (4) in (3)
\[=\dfrac{s{{\Delta }^{3}}}{{{\Delta }^{2}}}=s\Delta -(5)\]
Multiply numerator and denominator by ‘s’ in equation (5)
\[={{s}^{2}}\dfrac{\Delta }{s}\]
We know the radius in circle, r = a / (sum of lengths of triangle) = \[\dfrac{a}{s}\]
By substituting the same, we get
\[{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}\].
Note: Remember to use heron’s formula to simplify equation (1).
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

