
Prove that locus of the midpoint of a normal chord of the parabola \[{{y}^{2}}=4ax\] is \[{{y}^{4}}-2a(x-2a){{y}^{2}}+8{{a}^{4}}=0\]
Answer
213.6k+ views
Hint: Write the equation of the normal chord of the parabola in parametric form and apply the condition which relates the coordinates of the points at which the normal intersects the parabola. Find the midpoint of the points of intersection of normal to the parabola and solve it to get the locus of the parabola.
Complete step by step answer:
Let us consider a parabola \[{{y}^{2}}=4ax\]
We want to find the locus of midpoint of the normal chord of the parabola.

Let us consider the chord \[AB\] whose coordinates are of the form \[A(at_{1}^{2},2a{{t}_{1}})\] and \[B(at_{2}^{2},2a{{t}_{2}})\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
When a chord intersects normally to the parabola then the relation between the parameters of intersection points is \[{{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\] .
Substituting the above equation in the coordinates of point \[B(at_{2}^{2},2a{{t}_{2}})\] , we get \[B\left( a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}},2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right) \right)\] .
We know that the midpoint of any two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] .
Substituting \[{{x}_{1}}=at_{1}^{2},{{y}_{1}}=2a{{t}_{1}},{{x}_{2}}=at_{2}^{2},{{y}_{2}}=2a{{t}_{2}}\] in the above equation, we get \[\left( \dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2} \right)\] as the midpoint of chord \[AB\] .
Let’s assume that the midpoint of the chord \[AB\] is of the form \[\left( x,y \right)\] .
Thus, we have \[x=\dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},y=\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2}\] .
Solving the above equation, we have \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] and \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)\] .
Thus, we have \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)=\dfrac{-2a}{{{t}_{1}}}\] .
Rewriting the above equation, we have \[{{t}_{1}}=-\dfrac{2a}{y}\] .
Substituting the value \[{{t}_{1}}=-\dfrac{2a}{y}\] in the equation \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] , we have \[x=\dfrac{a}{2}\left( {{\left( -\dfrac{2a}{y} \right)}^{2}}+\dfrac{4}{{{\left( -\dfrac{2a}{y} \right)}^{2}}}+{{\left( -\dfrac{2a}{y} \right)}^{2}}+4 \right)\] .
Further simplifying the equation, we get \[x=\dfrac{a}{2}\left( \dfrac{4{{a}^{2}}}{{{y}^{2}}}+\dfrac{4}{\dfrac{4{{a}^{2}}}{{{y}^{2}}}}+\dfrac{4{{a}^{2}}}{{{y}^{2}}}+4 \right)\] .
By taking LCM and simplifying the terms, we get \[x=\left( \dfrac{4{{a}^{3}}}{{{y}^{2}}}+\dfrac{{{y}^{2}}}{2a}+2a \right)\]
\[\Rightarrow x=\dfrac{8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}}{2a{{y}^{2}}}\]
\[\Rightarrow 2ax{{y}^{2}}=8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}\]
\[\Rightarrow 8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}-2ax{{y}^{2}}=0\]
\[\Rightarrow {{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\]
Hence, the locus of midpoint of normal chord of the parabola is \[{{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\] .
Note: We can write the equation of normal of the parabola in slope form and find the point of intersection of normal with the parabola and find the midpoint to get the locus of the parabola.
Complete step by step answer:
Let us consider a parabola \[{{y}^{2}}=4ax\]
We want to find the locus of midpoint of the normal chord of the parabola.

Let us consider the chord \[AB\] whose coordinates are of the form \[A(at_{1}^{2},2a{{t}_{1}})\] and \[B(at_{2}^{2},2a{{t}_{2}})\] , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
When a chord intersects normally to the parabola then the relation between the parameters of intersection points is \[{{t}_{2}}=-\dfrac{2}{{{t}_{1}}}-{{t}_{1}}\] .
Substituting the above equation in the coordinates of point \[B(at_{2}^{2},2a{{t}_{2}})\] , we get \[B\left( a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}},2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right) \right)\] .
We know that the midpoint of any two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] .
Substituting \[{{x}_{1}}=at_{1}^{2},{{y}_{1}}=2a{{t}_{1}},{{x}_{2}}=at_{2}^{2},{{y}_{2}}=2a{{t}_{2}}\] in the above equation, we get \[\left( \dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2} \right)\] as the midpoint of chord \[AB\] .
Let’s assume that the midpoint of the chord \[AB\] is of the form \[\left( x,y \right)\] .
Thus, we have \[x=\dfrac{at_{1}^{2}+a{{\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}^{2}}}{2},y=\dfrac{2a{{t}_{1}}+2a\left( -\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)}{2}\] .
Solving the above equation, we have \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] and \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)\] .
Thus, we have \[y=\dfrac{2a}{2}\left( {{t}_{1}}-\dfrac{2}{{{t}_{1}}}-{{t}_{1}} \right)=\dfrac{-2a}{{{t}_{1}}}\] .
Rewriting the above equation, we have \[{{t}_{1}}=-\dfrac{2a}{y}\] .
Substituting the value \[{{t}_{1}}=-\dfrac{2a}{y}\] in the equation \[x=\dfrac{a}{2}\left( t_{1}^{2}+\dfrac{4}{t_{1}^{2}}+t_{1}^{2}+4 \right)\] , we have \[x=\dfrac{a}{2}\left( {{\left( -\dfrac{2a}{y} \right)}^{2}}+\dfrac{4}{{{\left( -\dfrac{2a}{y} \right)}^{2}}}+{{\left( -\dfrac{2a}{y} \right)}^{2}}+4 \right)\] .
Further simplifying the equation, we get \[x=\dfrac{a}{2}\left( \dfrac{4{{a}^{2}}}{{{y}^{2}}}+\dfrac{4}{\dfrac{4{{a}^{2}}}{{{y}^{2}}}}+\dfrac{4{{a}^{2}}}{{{y}^{2}}}+4 \right)\] .
By taking LCM and simplifying the terms, we get \[x=\left( \dfrac{4{{a}^{3}}}{{{y}^{2}}}+\dfrac{{{y}^{2}}}{2a}+2a \right)\]
\[\Rightarrow x=\dfrac{8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}}{2a{{y}^{2}}}\]
\[\Rightarrow 2ax{{y}^{2}}=8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}\]
\[\Rightarrow 8{{a}^{4}}+{{y}^{4}}+4{{a}^{2}}{{y}^{2}}-2ax{{y}^{2}}=0\]
\[\Rightarrow {{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\]
Hence, the locus of midpoint of normal chord of the parabola is \[{{y}^{4}}-2a\left( x-2a \right){{y}^{2}}+8{{a}^{4}}=0\] .
Note: We can write the equation of normal of the parabola in slope form and find the point of intersection of normal with the parabola and find the midpoint to get the locus of the parabola.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Atomic Structure: Definition, Models, and Examples

Electromagnetic Waves – Meaning, Types, Properties & Applications

JEE Main 2026 Helpline Numbers for Aspiring Candidates

Free Radical Substitution and Its Stepwise Mechanism

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter Chapter 4 Complex Numbers And Quadratic Equations

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

NCERT Solutions For Class 11 Maths Chapter 14 Probability - 2025-26

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

