# Prove that ${{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right)$.

Last updated date: 25th Mar 2023

•

Total views: 305.1k

•

Views today: 4.83k

Answer

Verified

305.1k+ views

Hint: Expand the L.H.S term and simplify it and Use Trigonometric ratios and identities to get the required answer.

“Complete step-by-step answer:”

To prove, ${{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right)$

Left hand side (L.H.S) $={{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}$

We open the brackets by the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.

$\begin{align}

& \therefore LHS=\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta }+2\tan \theta \cos \theta \right)+\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta }-2\tan \theta \cos \theta \right) \\

& \Rightarrow LHS=2{{\tan }^{2}}\theta +\dfrac{2}{{{\cos }^{2}}\theta } \\

& \Rightarrow LHS=2\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta } \right) \\

\end{align}$

Let us write $\tan \theta \ as\ \dfrac{\sin \theta }{\cos \theta }$.

$\begin{align}

& \Rightarrow LHS=2\left[ {{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}+\dfrac{1}{{{\cos }^{2}}\theta } \right] \\

& \Rightarrow LHS=2\left( \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta } \right) \\

& \Rightarrow LHS=2\left( \dfrac{1+{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right) \\

\end{align}$

We know that \[1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \].

$\begin{align}

& \therefore LHS=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right) \\

& L.H.S=R.H.S \\

\end{align}$

Hence proved.

Note: In questions like these, our aim is to correct the longer side, in this case L.H.S identical to the other side. Therefore, after every step, we try to manipulate the expression.

Formulae used:

$\begin{align}

& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\

& {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\

& {{\tan }^{2}}\theta =\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \\

\end{align}$

“Complete step-by-step answer:”

To prove, ${{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right)$

Left hand side (L.H.S) $={{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}$

We open the brackets by the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.

$\begin{align}

& \therefore LHS=\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta }+2\tan \theta \cos \theta \right)+\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta }-2\tan \theta \cos \theta \right) \\

& \Rightarrow LHS=2{{\tan }^{2}}\theta +\dfrac{2}{{{\cos }^{2}}\theta } \\

& \Rightarrow LHS=2\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta } \right) \\

\end{align}$

Let us write $\tan \theta \ as\ \dfrac{\sin \theta }{\cos \theta }$.

$\begin{align}

& \Rightarrow LHS=2\left[ {{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}+\dfrac{1}{{{\cos }^{2}}\theta } \right] \\

& \Rightarrow LHS=2\left( \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta } \right) \\

& \Rightarrow LHS=2\left( \dfrac{1+{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right) \\

\end{align}$

We know that \[1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta \].

$\begin{align}

& \therefore LHS=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right) \\

& L.H.S=R.H.S \\

\end{align}$

Hence proved.

Note: In questions like these, our aim is to correct the longer side, in this case L.H.S identical to the other side. Therefore, after every step, we try to manipulate the expression.

Formulae used:

$\begin{align}

& {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\

& {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\

& {{\tan }^{2}}\theta =\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \\

\end{align}$

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?