Answer
Verified
483.9k+ views
Hint: Use Binomial expansion of ${(1 + x)^n}$ and then differentiate it.
To prove: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$
We know that, Binomial expansion of ${(1 + x)^n}$ is ${C_0} + {C_1}x + {C_2}{x^2} + {\text{ }} \ldots {C_n}{x^n} = {\left( {1 + x} \right)^n}$
Differentiating the expansion of ${\left( {1 + x} \right)^n}$ with respect to $x$, we get
$n{\left( {1 + x} \right)^{n - 1}} = {C_1} + 2{C_2}x + 3{C_2}{x^2} + \ldots \ldots + n{C_n}{x^{n - 1}}{\text{ }} \ldots \left( 1 \right)$
Keeping in view the form of question we multiply both sides of $\left( 1 \right)$ by $x$, we get
$nx{\left( {1 + x} \right)^{n - 1}} = {C_1}x + 2{C_2}{x^2} + 3{C_2}{x^3} + \ldots \ldots + n{C_n}{x^n}{\text{ }} \ldots \left( 2 \right)$
Now differentiating equation $\left( 2 \right)$ with respect to $x$, we get
$n\left[ {1.{{\left( {1 + x} \right)}^{n - 1}} + x.\left( {n - 1} \right){{\left( {1 + x} \right)}^{n - 2}}} \right] = {C_1} + {2^2}{C_2}x + {3^2}{C_3}{x^2} + \ldots \ldots + {n^2}{C_2}{x^{n - 1}}{\text{ }} \ldots \left( 3 \right)$
Now put $x = 1$in equation $\left( 3 \right)$, we get
$
\Rightarrow n\left[ {{2^{n - 1}} + \left( {n - 1} \right)\left( {{2^{n - 2}}} \right)} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n{2^{n - 2}}\left[ {2 + n - 1} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n\left( {n + 1} \right){2^{n - 2}}{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
$
Hence Proved.
Note: In these types of problems, the most important part is to recognize the series and bring it in terms of binomial expansion and then try to match the coefficients of the series.
To prove: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$
We know that, Binomial expansion of ${(1 + x)^n}$ is ${C_0} + {C_1}x + {C_2}{x^2} + {\text{ }} \ldots {C_n}{x^n} = {\left( {1 + x} \right)^n}$
Differentiating the expansion of ${\left( {1 + x} \right)^n}$ with respect to $x$, we get
$n{\left( {1 + x} \right)^{n - 1}} = {C_1} + 2{C_2}x + 3{C_2}{x^2} + \ldots \ldots + n{C_n}{x^{n - 1}}{\text{ }} \ldots \left( 1 \right)$
Keeping in view the form of question we multiply both sides of $\left( 1 \right)$ by $x$, we get
$nx{\left( {1 + x} \right)^{n - 1}} = {C_1}x + 2{C_2}{x^2} + 3{C_2}{x^3} + \ldots \ldots + n{C_n}{x^n}{\text{ }} \ldots \left( 2 \right)$
Now differentiating equation $\left( 2 \right)$ with respect to $x$, we get
$n\left[ {1.{{\left( {1 + x} \right)}^{n - 1}} + x.\left( {n - 1} \right){{\left( {1 + x} \right)}^{n - 2}}} \right] = {C_1} + {2^2}{C_2}x + {3^2}{C_3}{x^2} + \ldots \ldots + {n^2}{C_2}{x^{n - 1}}{\text{ }} \ldots \left( 3 \right)$
Now put $x = 1$in equation $\left( 3 \right)$, we get
$
\Rightarrow n\left[ {{2^{n - 1}} + \left( {n - 1} \right)\left( {{2^{n - 2}}} \right)} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n{2^{n - 2}}\left[ {2 + n - 1} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n\left( {n + 1} \right){2^{n - 2}}{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
$
Hence Proved.
Note: In these types of problems, the most important part is to recognize the series and bring it in terms of binomial expansion and then try to match the coefficients of the series.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Harsha Charita was written by A Kalidasa B Vishakhadatta class 7 social science CBSE
Which are the Top 10 Largest Countries of the World?
Banabhatta wrote Harshavardhanas biography What is class 6 social science CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE