# Prove that: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$

Answer

Verified

363.9k+ views

Hint: Use Binomial expansion of ${(1 + x)^n}$ and then differentiate it.

To prove: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$

We know that, Binomial expansion of ${(1 + x)^n}$ is ${C_0} + {C_1}x + {C_2}{x^2} + {\text{ }} \ldots {C_n}{x^n} = {\left( {1 + x} \right)^n}$

Differentiating the expansion of ${\left( {1 + x} \right)^n}$ with respect to $x$, we get

$n{\left( {1 + x} \right)^{n - 1}} = {C_1} + 2{C_2}x + 3{C_2}{x^2} + \ldots \ldots + n{C_n}{x^{n - 1}}{\text{ }} \ldots \left( 1 \right)$

Keeping in view the form of question we multiply both sides of $\left( 1 \right)$ by $x$, we get

$nx{\left( {1 + x} \right)^{n - 1}} = {C_1}x + 2{C_2}{x^2} + 3{C_2}{x^3} + \ldots \ldots + n{C_n}{x^n}{\text{ }} \ldots \left( 2 \right)$

Now differentiating equation $\left( 2 \right)$ with respect to $x$, we get

$n\left[ {1.{{\left( {1 + x} \right)}^{n - 1}} + x.\left( {n - 1} \right){{\left( {1 + x} \right)}^{n - 2}}} \right] = {C_1} + {2^2}{C_2}x + {3^2}{C_3}{x^2} + \ldots \ldots + {n^2}{C_2}{x^{n - 1}}{\text{ }} \ldots \left( 3 \right)$

Now put $x = 1$in equation $\left( 3 \right)$, we get

$

\Rightarrow n\left[ {{2^{n - 1}} + \left( {n - 1} \right)\left( {{2^{n - 2}}} \right)} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\

\Rightarrow n{2^{n - 2}}\left[ {2 + n - 1} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\

\Rightarrow n\left( {n + 1} \right){2^{n - 2}}{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\

$

Hence Proved.

Note: In these types of problems, the most important part is to recognize the series and bring it in terms of binomial expansion and then try to match the coefficients of the series.

To prove: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$

We know that, Binomial expansion of ${(1 + x)^n}$ is ${C_0} + {C_1}x + {C_2}{x^2} + {\text{ }} \ldots {C_n}{x^n} = {\left( {1 + x} \right)^n}$

Differentiating the expansion of ${\left( {1 + x} \right)^n}$ with respect to $x$, we get

$n{\left( {1 + x} \right)^{n - 1}} = {C_1} + 2{C_2}x + 3{C_2}{x^2} + \ldots \ldots + n{C_n}{x^{n - 1}}{\text{ }} \ldots \left( 1 \right)$

Keeping in view the form of question we multiply both sides of $\left( 1 \right)$ by $x$, we get

$nx{\left( {1 + x} \right)^{n - 1}} = {C_1}x + 2{C_2}{x^2} + 3{C_2}{x^3} + \ldots \ldots + n{C_n}{x^n}{\text{ }} \ldots \left( 2 \right)$

Now differentiating equation $\left( 2 \right)$ with respect to $x$, we get

$n\left[ {1.{{\left( {1 + x} \right)}^{n - 1}} + x.\left( {n - 1} \right){{\left( {1 + x} \right)}^{n - 2}}} \right] = {C_1} + {2^2}{C_2}x + {3^2}{C_3}{x^2} + \ldots \ldots + {n^2}{C_2}{x^{n - 1}}{\text{ }} \ldots \left( 3 \right)$

Now put $x = 1$in equation $\left( 3 \right)$, we get

$

\Rightarrow n\left[ {{2^{n - 1}} + \left( {n - 1} \right)\left( {{2^{n - 2}}} \right)} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\

\Rightarrow n{2^{n - 2}}\left[ {2 + n - 1} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\

\Rightarrow n\left( {n + 1} \right){2^{n - 2}}{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\

$

Hence Proved.

Note: In these types of problems, the most important part is to recognize the series and bring it in terms of binomial expansion and then try to match the coefficients of the series.

Last updated date: 27th Sep 2023

â€¢

Total views: 363.9k

â€¢

Views today: 10.63k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers