
Prove that: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$
Answer
605.4k+ views
Hint: Use Binomial expansion of ${(1 + x)^n}$ and then differentiate it.
To prove: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$
We know that, Binomial expansion of ${(1 + x)^n}$ is ${C_0} + {C_1}x + {C_2}{x^2} + {\text{ }} \ldots {C_n}{x^n} = {\left( {1 + x} \right)^n}$
Differentiating the expansion of ${\left( {1 + x} \right)^n}$ with respect to $x$, we get
$n{\left( {1 + x} \right)^{n - 1}} = {C_1} + 2{C_2}x + 3{C_2}{x^2} + \ldots \ldots + n{C_n}{x^{n - 1}}{\text{ }} \ldots \left( 1 \right)$
Keeping in view the form of question we multiply both sides of $\left( 1 \right)$ by $x$, we get
$nx{\left( {1 + x} \right)^{n - 1}} = {C_1}x + 2{C_2}{x^2} + 3{C_2}{x^3} + \ldots \ldots + n{C_n}{x^n}{\text{ }} \ldots \left( 2 \right)$
Now differentiating equation $\left( 2 \right)$ with respect to $x$, we get
$n\left[ {1.{{\left( {1 + x} \right)}^{n - 1}} + x.\left( {n - 1} \right){{\left( {1 + x} \right)}^{n - 2}}} \right] = {C_1} + {2^2}{C_2}x + {3^2}{C_3}{x^2} + \ldots \ldots + {n^2}{C_2}{x^{n - 1}}{\text{ }} \ldots \left( 3 \right)$
Now put $x = 1$in equation $\left( 3 \right)$, we get
$
\Rightarrow n\left[ {{2^{n - 1}} + \left( {n - 1} \right)\left( {{2^{n - 2}}} \right)} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n{2^{n - 2}}\left[ {2 + n - 1} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n\left( {n + 1} \right){2^{n - 2}}{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
$
Hence Proved.
Note: In these types of problems, the most important part is to recognize the series and bring it in terms of binomial expansion and then try to match the coefficients of the series.
To prove: ${1^2}.{C_1} + {2^2}.{C_2} + {3^2}.{C_3} + {\text{ }} \ldots {n^2}.{C_n} = n\left( {n + 1} \right){2^{n - 2}}$
We know that, Binomial expansion of ${(1 + x)^n}$ is ${C_0} + {C_1}x + {C_2}{x^2} + {\text{ }} \ldots {C_n}{x^n} = {\left( {1 + x} \right)^n}$
Differentiating the expansion of ${\left( {1 + x} \right)^n}$ with respect to $x$, we get
$n{\left( {1 + x} \right)^{n - 1}} = {C_1} + 2{C_2}x + 3{C_2}{x^2} + \ldots \ldots + n{C_n}{x^{n - 1}}{\text{ }} \ldots \left( 1 \right)$
Keeping in view the form of question we multiply both sides of $\left( 1 \right)$ by $x$, we get
$nx{\left( {1 + x} \right)^{n - 1}} = {C_1}x + 2{C_2}{x^2} + 3{C_2}{x^3} + \ldots \ldots + n{C_n}{x^n}{\text{ }} \ldots \left( 2 \right)$
Now differentiating equation $\left( 2 \right)$ with respect to $x$, we get
$n\left[ {1.{{\left( {1 + x} \right)}^{n - 1}} + x.\left( {n - 1} \right){{\left( {1 + x} \right)}^{n - 2}}} \right] = {C_1} + {2^2}{C_2}x + {3^2}{C_3}{x^2} + \ldots \ldots + {n^2}{C_2}{x^{n - 1}}{\text{ }} \ldots \left( 3 \right)$
Now put $x = 1$in equation $\left( 3 \right)$, we get
$
\Rightarrow n\left[ {{2^{n - 1}} + \left( {n - 1} \right)\left( {{2^{n - 2}}} \right)} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n{2^{n - 2}}\left[ {2 + n - 1} \right]{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
\Rightarrow n\left( {n + 1} \right){2^{n - 2}}{\text{ }} = {\text{ }}{{\text{1}}^2}{C_1} + {2^2}{C_2} + {3^2}{C_3} + \ldots \ldots + {n^2}{C_n} \\
$
Hence Proved.
Note: In these types of problems, the most important part is to recognize the series and bring it in terms of binomial expansion and then try to match the coefficients of the series.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

