
Prove by using vector
\[\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \]
Answer
586.2k+ views
Hint: It is sometimes useful to write a vector $v$ in terms of its magnitude and argument rather than rectangular form \[a\widehat i + b\widehat j\]. This is done using the sine and cosine functions. The \[r(\cos \alpha \widehat i + \sin \alpha \widehat j)\] version of $v$ is called trigonometric form. Since \[\,\left| {\cos \alpha \widehat i + \sin \alpha \widehat j} \right| = 1\] the trigonometric form expresses $v$ as a scalar multiple of a unit vector in the same direction as $v$.
Complete step by step solution:
Consider a unit circle.
Draw two-unit vectors \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \] with an angle of
\[
\angle POX = \alpha \\
\angle QOX = \beta \\
\angle POQ = \alpha - \beta \\
\]
\[
\left| {\overrightarrow {OP} } \right| = 1 \\
\left| {\overrightarrow {OQ} } \right| = 1 \\
\]
Now as we have described in hint:0
\[
\overrightarrow {OP} = \cos \alpha \widehat i + \sin \alpha \widehat j \ldots \ldots (1) \\
\overrightarrow {OQ} = \cos \beta \widehat i + \sin \beta \widehat j \ldots \ldots (2) \\
\]
The scalar product \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \]of two vectors \[\overrightarrow {OP} \] and \[\overrightarrow {OQ} \] is a number defined by the equation
\[\overrightarrow {OP} \cdot \overrightarrow {OQ} = \left| {\overrightarrow {OP} } \right|\left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right) = \cos \left( {\alpha - \beta } \right) \ldots \ldots (3)\]
where \[\alpha \]and \[\beta \] is the angle between the vectors.
Also from equation (1) and (2)
\[
\overrightarrow {OQ} = \left( {\cos \alpha \widehat i + \sin \alpha \widehat j} \right)\left( {\cos \beta \widehat i + \sin \beta \widehat j} \right) \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \cos \beta \widehat i + \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i + \sin \alpha \widehat j \cdot \sin \beta \widehat j \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \ldots \ldots (4) \\
\]
So with the equation (3) and (4)
\[ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \]
Hence Proved.
Note:
Sometimes people forget when to use sin or cos for calculating vector components. It is important to note that the dot product always results in a scalar value. Furthermore, the dot symbol “.” always refers to a dot product of two vectors, not traditional multiplication of two scalars as we have previously known.
Complete step by step solution:
Consider a unit circle.
Draw two-unit vectors \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \] with an angle of
\[
\angle POX = \alpha \\
\angle QOX = \beta \\
\angle POQ = \alpha - \beta \\
\]
\[
\left| {\overrightarrow {OP} } \right| = 1 \\
\left| {\overrightarrow {OQ} } \right| = 1 \\
\]
Now as we have described in hint:0
\[
\overrightarrow {OP} = \cos \alpha \widehat i + \sin \alpha \widehat j \ldots \ldots (1) \\
\overrightarrow {OQ} = \cos \beta \widehat i + \sin \beta \widehat j \ldots \ldots (2) \\
\]
The scalar product \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \]of two vectors \[\overrightarrow {OP} \] and \[\overrightarrow {OQ} \] is a number defined by the equation
\[\overrightarrow {OP} \cdot \overrightarrow {OQ} = \left| {\overrightarrow {OP} } \right|\left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right) = \cos \left( {\alpha - \beta } \right) \ldots \ldots (3)\]
where \[\alpha \]and \[\beta \] is the angle between the vectors.
Also from equation (1) and (2)
\[
\overrightarrow {OQ} = \left( {\cos \alpha \widehat i + \sin \alpha \widehat j} \right)\left( {\cos \beta \widehat i + \sin \beta \widehat j} \right) \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \cos \beta \widehat i + \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i + \sin \alpha \widehat j \cdot \sin \beta \widehat j \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \ldots \ldots (4) \\
\]
So with the equation (3) and (4)
\[ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \]
Hence Proved.
Note:
Sometimes people forget when to use sin or cos for calculating vector components. It is important to note that the dot product always results in a scalar value. Furthermore, the dot symbol “.” always refers to a dot product of two vectors, not traditional multiplication of two scalars as we have previously known.
Recently Updated Pages
Questions & Answers - Ask your doubts

Master Class 9 Social Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

