Answer
Verified
446.4k+ views
Hint: It is sometimes useful to write a vector $v$ in terms of its magnitude and argument rather than rectangular form \[a\widehat i + b\widehat j\]. This is done using the sine and cosine functions. The \[r(\cos \alpha \widehat i + \sin \alpha \widehat j)\] version of $v$ is called trigonometric form. Since \[\,\left| {\cos \alpha \widehat i + \sin \alpha \widehat j} \right| = 1\] the trigonometric form expresses $v$ as a scalar multiple of a unit vector in the same direction as $v$.
Complete step by step solution:
Consider a unit circle.
Draw two-unit vectors \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \] with an angle of
\[
\angle POX = \alpha \\
\angle QOX = \beta \\
\angle POQ = \alpha - \beta \\
\]
\[
\left| {\overrightarrow {OP} } \right| = 1 \\
\left| {\overrightarrow {OQ} } \right| = 1 \\
\]
Now as we have described in hint:0
\[
\overrightarrow {OP} = \cos \alpha \widehat i + \sin \alpha \widehat j \ldots \ldots (1) \\
\overrightarrow {OQ} = \cos \beta \widehat i + \sin \beta \widehat j \ldots \ldots (2) \\
\]
The scalar product \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \]of two vectors \[\overrightarrow {OP} \] and \[\overrightarrow {OQ} \] is a number defined by the equation
\[\overrightarrow {OP} \cdot \overrightarrow {OQ} = \left| {\overrightarrow {OP} } \right|\left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right) = \cos \left( {\alpha - \beta } \right) \ldots \ldots (3)\]
where \[\alpha \]and \[\beta \] is the angle between the vectors.
Also from equation (1) and (2)
\[
\overrightarrow {OQ} = \left( {\cos \alpha \widehat i + \sin \alpha \widehat j} \right)\left( {\cos \beta \widehat i + \sin \beta \widehat j} \right) \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \cos \beta \widehat i + \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i + \sin \alpha \widehat j \cdot \sin \beta \widehat j \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \ldots \ldots (4) \\
\]
So with the equation (3) and (4)
\[ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \]
Hence Proved.
Note:
Sometimes people forget when to use sin or cos for calculating vector components. It is important to note that the dot product always results in a scalar value. Furthermore, the dot symbol “.” always refers to a dot product of two vectors, not traditional multiplication of two scalars as we have previously known.
Complete step by step solution:
Consider a unit circle.
Draw two-unit vectors \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \] with an angle of
\[
\angle POX = \alpha \\
\angle QOX = \beta \\
\angle POQ = \alpha - \beta \\
\]
\[
\left| {\overrightarrow {OP} } \right| = 1 \\
\left| {\overrightarrow {OQ} } \right| = 1 \\
\]
Now as we have described in hint:0
\[
\overrightarrow {OP} = \cos \alpha \widehat i + \sin \alpha \widehat j \ldots \ldots (1) \\
\overrightarrow {OQ} = \cos \beta \widehat i + \sin \beta \widehat j \ldots \ldots (2) \\
\]
The scalar product \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \]of two vectors \[\overrightarrow {OP} \] and \[\overrightarrow {OQ} \] is a number defined by the equation
\[\overrightarrow {OP} \cdot \overrightarrow {OQ} = \left| {\overrightarrow {OP} } \right|\left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right) = \cos \left( {\alpha - \beta } \right) \ldots \ldots (3)\]
where \[\alpha \]and \[\beta \] is the angle between the vectors.
Also from equation (1) and (2)
\[
\overrightarrow {OQ} = \left( {\cos \alpha \widehat i + \sin \alpha \widehat j} \right)\left( {\cos \beta \widehat i + \sin \beta \widehat j} \right) \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \cos \beta \widehat i + \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i + \sin \alpha \widehat j \cdot \sin \beta \widehat j \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \ldots \ldots (4) \\
\]
So with the equation (3) and (4)
\[ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \]
Hence Proved.
Note:
Sometimes people forget when to use sin or cos for calculating vector components. It is important to note that the dot product always results in a scalar value. Furthermore, the dot symbol “.” always refers to a dot product of two vectors, not traditional multiplication of two scalars as we have previously known.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE