
How can you proof $\int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c$ using $x = a\sin \theta $?
Answer
539.4k+ views
Hint: Substitute the given value for $x$ in the left hand side of the integration and replace $dx$ accordingly. Simplify the expression in integration using formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $ and then integrate it. Determine the other trigonometric ratios from $x = a\sin \theta $ to get the integration result in terms of $x$. Simplify the final result and bring it in the form of right hand side.
Complete step by step answer:
According to the question, we have to prove the integration using the given substitution.
The integration to prove is:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c{\text{ }}.....{\text{(1)}}$
Let the left hand side integral is denoted as $I$, then we have:
$ \Rightarrow I = \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} {\text{ }}.....{\text{(2)}}$
Now as it is given that we have to use substitution to prove it. So we have:
$ \Rightarrow x = a\sin \theta $
Differentiating it both sides, we’ll get:
$ \Rightarrow dx = a\cos \theta d\theta $
Putting these values in integration equation (2), we’ll get:
$ \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}} $
Simplifying it further, we’ll het:
\[
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}} \\
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}} \\
\]
We know the trigonometric formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $. Using this, we’ll get:
\[
\Rightarrow I = \int {\dfrac{{\cos \theta d\theta }}{{a{{\cos }^2}\theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\dfrac{{d\theta }}{{\cos \theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\sec \theta d\theta } \\
\]
We know the integration formula \[\int {\sec x = } \log \left| {\sec x + \tan x} \right| + c\]. Using this formula, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\sec \theta + \tan \theta } \right| + c{\text{ }}.....{\text{(3)}}\]
We have used $x = a\sin \theta $. From this we have:
$ \Rightarrow \sin \theta = \dfrac{x}{a}$
Using the value of $\sin \theta $, we can determine other trigonometric ratios. So we have:
$ \Rightarrow \sec \theta = \dfrac{a}{{\sqrt {{a^2} - {x^2}} }}$ and $\tan \theta = \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$. Putting these values in equation (3), we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }} + \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Simplifying this further, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Using the algebraic formula $\left( {{x^2} - {a^2}} \right) = \left( {x - a} \right)\left( {x + a} \right)$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)} \sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\sqrt {\left( {a + x} \right)} }}{{\sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log {\left| {\dfrac{{a + x}}{{a - x}}} \right|^{\dfrac{1}{2}}} + c \\
\]
Applying the logarithmic formula $\log {a^b} = b\log a$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a} \times \dfrac{1}{2}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\Rightarrow I = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\]
Putting the value of $I$ from equation (2), we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c$
This is the required proof of the integration.
Note: The integration can also be by partial fraction method as shown:
\[ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{{dx}}{{\left( {a - x} \right)\left( {a + x} \right)}}} \]
Now we can apply partial fraction, the expression in the integration can be written as:
\[ \Rightarrow \dfrac{1}{{\left( {a - x} \right)\left( {a + x} \right)}} = \dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)\]
Using this partial fraction in the above integration, we’ll get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)dx} \\
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\left( {\int {\dfrac{{dx}}{{a + x}} + \int {\dfrac{{dx}}{{a - x}}} } } \right) \\
\]
Now we can easily integrate this and we will get the same result.
Complete step by step answer:
According to the question, we have to prove the integration using the given substitution.
The integration to prove is:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c{\text{ }}.....{\text{(1)}}$
Let the left hand side integral is denoted as $I$, then we have:
$ \Rightarrow I = \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} {\text{ }}.....{\text{(2)}}$
Now as it is given that we have to use substitution to prove it. So we have:
$ \Rightarrow x = a\sin \theta $
Differentiating it both sides, we’ll get:
$ \Rightarrow dx = a\cos \theta d\theta $
Putting these values in integration equation (2), we’ll get:
$ \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}} $
Simplifying it further, we’ll het:
\[
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}} \\
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}} \\
\]
We know the trigonometric formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $. Using this, we’ll get:
\[
\Rightarrow I = \int {\dfrac{{\cos \theta d\theta }}{{a{{\cos }^2}\theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\dfrac{{d\theta }}{{\cos \theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\sec \theta d\theta } \\
\]
We know the integration formula \[\int {\sec x = } \log \left| {\sec x + \tan x} \right| + c\]. Using this formula, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\sec \theta + \tan \theta } \right| + c{\text{ }}.....{\text{(3)}}\]
We have used $x = a\sin \theta $. From this we have:
$ \Rightarrow \sin \theta = \dfrac{x}{a}$
Using the value of $\sin \theta $, we can determine other trigonometric ratios. So we have:
$ \Rightarrow \sec \theta = \dfrac{a}{{\sqrt {{a^2} - {x^2}} }}$ and $\tan \theta = \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$. Putting these values in equation (3), we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }} + \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Simplifying this further, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Using the algebraic formula $\left( {{x^2} - {a^2}} \right) = \left( {x - a} \right)\left( {x + a} \right)$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)} \sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\sqrt {\left( {a + x} \right)} }}{{\sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log {\left| {\dfrac{{a + x}}{{a - x}}} \right|^{\dfrac{1}{2}}} + c \\
\]
Applying the logarithmic formula $\log {a^b} = b\log a$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a} \times \dfrac{1}{2}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\Rightarrow I = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\]
Putting the value of $I$ from equation (2), we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c$
This is the required proof of the integration.
Note: The integration can also be by partial fraction method as shown:
\[ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{{dx}}{{\left( {a - x} \right)\left( {a + x} \right)}}} \]
Now we can apply partial fraction, the expression in the integration can be written as:
\[ \Rightarrow \dfrac{1}{{\left( {a - x} \right)\left( {a + x} \right)}} = \dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)\]
Using this partial fraction in the above integration, we’ll get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)dx} \\
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\left( {\int {\dfrac{{dx}}{{a + x}} + \int {\dfrac{{dx}}{{a - x}}} } } \right) \\
\]
Now we can easily integrate this and we will get the same result.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

