Answer
Verified
406.8k+ views
Hint: Substitute the given value for $x$ in the left hand side of the integration and replace $dx$ accordingly. Simplify the expression in integration using formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $ and then integrate it. Determine the other trigonometric ratios from $x = a\sin \theta $ to get the integration result in terms of $x$. Simplify the final result and bring it in the form of right hand side.
Complete step by step answer:
According to the question, we have to prove the integration using the given substitution.
The integration to prove is:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c{\text{ }}.....{\text{(1)}}$
Let the left hand side integral is denoted as $I$, then we have:
$ \Rightarrow I = \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} {\text{ }}.....{\text{(2)}}$
Now as it is given that we have to use substitution to prove it. So we have:
$ \Rightarrow x = a\sin \theta $
Differentiating it both sides, we’ll get:
$ \Rightarrow dx = a\cos \theta d\theta $
Putting these values in integration equation (2), we’ll get:
$ \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}} $
Simplifying it further, we’ll het:
\[
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}} \\
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}} \\
\]
We know the trigonometric formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $. Using this, we’ll get:
\[
\Rightarrow I = \int {\dfrac{{\cos \theta d\theta }}{{a{{\cos }^2}\theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\dfrac{{d\theta }}{{\cos \theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\sec \theta d\theta } \\
\]
We know the integration formula \[\int {\sec x = } \log \left| {\sec x + \tan x} \right| + c\]. Using this formula, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\sec \theta + \tan \theta } \right| + c{\text{ }}.....{\text{(3)}}\]
We have used $x = a\sin \theta $. From this we have:
$ \Rightarrow \sin \theta = \dfrac{x}{a}$
Using the value of $\sin \theta $, we can determine other trigonometric ratios. So we have:
$ \Rightarrow \sec \theta = \dfrac{a}{{\sqrt {{a^2} - {x^2}} }}$ and $\tan \theta = \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$. Putting these values in equation (3), we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }} + \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Simplifying this further, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Using the algebraic formula $\left( {{x^2} - {a^2}} \right) = \left( {x - a} \right)\left( {x + a} \right)$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)} \sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\sqrt {\left( {a + x} \right)} }}{{\sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log {\left| {\dfrac{{a + x}}{{a - x}}} \right|^{\dfrac{1}{2}}} + c \\
\]
Applying the logarithmic formula $\log {a^b} = b\log a$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a} \times \dfrac{1}{2}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\Rightarrow I = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\]
Putting the value of $I$ from equation (2), we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c$
This is the required proof of the integration.
Note: The integration can also be by partial fraction method as shown:
\[ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{{dx}}{{\left( {a - x} \right)\left( {a + x} \right)}}} \]
Now we can apply partial fraction, the expression in the integration can be written as:
\[ \Rightarrow \dfrac{1}{{\left( {a - x} \right)\left( {a + x} \right)}} = \dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)\]
Using this partial fraction in the above integration, we’ll get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)dx} \\
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\left( {\int {\dfrac{{dx}}{{a + x}} + \int {\dfrac{{dx}}{{a - x}}} } } \right) \\
\]
Now we can easily integrate this and we will get the same result.
Complete step by step answer:
According to the question, we have to prove the integration using the given substitution.
The integration to prove is:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c{\text{ }}.....{\text{(1)}}$
Let the left hand side integral is denoted as $I$, then we have:
$ \Rightarrow I = \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} {\text{ }}.....{\text{(2)}}$
Now as it is given that we have to use substitution to prove it. So we have:
$ \Rightarrow x = a\sin \theta $
Differentiating it both sides, we’ll get:
$ \Rightarrow dx = a\cos \theta d\theta $
Putting these values in integration equation (2), we’ll get:
$ \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}} $
Simplifying it further, we’ll het:
\[
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}} \\
\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}} \\
\]
We know the trigonometric formula $1 - {\sin ^2}\theta = {\cos ^2}\theta $. Using this, we’ll get:
\[
\Rightarrow I = \int {\dfrac{{\cos \theta d\theta }}{{a{{\cos }^2}\theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\dfrac{{d\theta }}{{\cos \theta }}} \\
\Rightarrow I = \dfrac{1}{a}\int {\sec \theta d\theta } \\
\]
We know the integration formula \[\int {\sec x = } \log \left| {\sec x + \tan x} \right| + c\]. Using this formula, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\sec \theta + \tan \theta } \right| + c{\text{ }}.....{\text{(3)}}\]
We have used $x = a\sin \theta $. From this we have:
$ \Rightarrow \sin \theta = \dfrac{x}{a}$
Using the value of $\sin \theta $, we can determine other trigonometric ratios. So we have:
$ \Rightarrow \sec \theta = \dfrac{a}{{\sqrt {{a^2} - {x^2}} }}$ and $\tan \theta = \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}$. Putting these values in equation (3), we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }} + \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Simplifying this further, we’ll get:
\[ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {{a^2} - {x^2}} }}} \right| + c\]
Using the algebraic formula $\left( {{x^2} - {a^2}} \right) = \left( {x - a} \right)\left( {x + a} \right)$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)} \sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\sqrt {\left( {a + x} \right)} }}{{\sqrt {\left( {a - x} \right)} }}} \right| + c \\
\Rightarrow I = \dfrac{1}{a}\log {\left| {\dfrac{{a + x}}{{a - x}}} \right|^{\dfrac{1}{2}}} + c \\
\]
Applying the logarithmic formula $\log {a^b} = b\log a$, we’ll get:
\[
\Rightarrow I = \dfrac{1}{a} \times \dfrac{1}{2}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\Rightarrow I = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\
\]
Putting the value of $I$ from equation (2), we’ll get:
$ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c$
This is the required proof of the integration.
Note: The integration can also be by partial fraction method as shown:
\[ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{{dx}}{{\left( {a - x} \right)\left( {a + x} \right)}}} \]
Now we can apply partial fraction, the expression in the integration can be written as:
\[ \Rightarrow \dfrac{1}{{\left( {a - x} \right)\left( {a + x} \right)}} = \dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)\]
Using this partial fraction in the above integration, we’ll get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)dx} \\
\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\left( {\int {\dfrac{{dx}}{{a + x}} + \int {\dfrac{{dx}}{{a - x}}} } } \right) \\
\]
Now we can easily integrate this and we will get the same result.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE