Answer
Verified
406.8k+ views
Hint: To solve this question, we need to consider the general equation of a parabola. The number of independent constants which are present in the standard equation are to be determined for the determination of the equation of a parabola. The minimum points lying on the parabola needed for determining the values of these independent constants will be equal to the final answer.
Complete step-by-step solution:
Let us consider that the axis of the parabola is vertical. We know that the standard equation of such a parabola is given by
$\left( {y - k} \right) = a{\left( {x - h} \right)^2}$
Here $\left( {h,k} \right)$ are the coordinates of the vertex of the parabola, and $a$ is a constant. So overall we have three independent constants appearing in the standard equation of a parabola. For determining the equation of a parabola, we have to solve for these three independent constants. So we need minimum three equations in terms of a, h, and k.
For obtaining three equations in terms of the three independent constants a, h and k, we need three points lying on the parabola.
Hence, for determining the equation of a parabola, we need a minimum number of three points.
Note:
We may argue that for the case of the parabola represented by the standard equation ${y^2} = 4ax$, we have only one independent constant appearing in this equation and therefore only one point is needed to determine its equation. But we must note that ${y^2} = 4ax$ is not the general equation of a parabola. It is the special case of a parabola whose vertex lies at the origin.
Complete step-by-step solution:
Let us consider that the axis of the parabola is vertical. We know that the standard equation of such a parabola is given by
$\left( {y - k} \right) = a{\left( {x - h} \right)^2}$
Here $\left( {h,k} \right)$ are the coordinates of the vertex of the parabola, and $a$ is a constant. So overall we have three independent constants appearing in the standard equation of a parabola. For determining the equation of a parabola, we have to solve for these three independent constants. So we need minimum three equations in terms of a, h, and k.
For obtaining three equations in terms of the three independent constants a, h and k, we need three points lying on the parabola.
Hence, for determining the equation of a parabola, we need a minimum number of three points.
Note:
We may argue that for the case of the parabola represented by the standard equation ${y^2} = 4ax$, we have only one independent constant appearing in this equation and therefore only one point is needed to determine its equation. But we must note that ${y^2} = 4ax$ is not the general equation of a parabola. It is the special case of a parabola whose vertex lies at the origin.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE