Answer
Verified
390.3k+ views
Hint: The photoelectric effect formula should be used to solve this problem. The photoelectric effect formula gives the relation between the Planck’s constant, the speed of light, the wavelength of that wave and the photoelectric work function. The unit of the work function should be converted to Joules.
Formula used:
\[\dfrac{hc}{\lambda }=\phi \]
Complete step by step answer:
From the given information, we have the data as follows.
Photoelectric work function of metal is 3.2 eV.
The photoelectric effect formula gives the relation between the Planck’s constant, the speed of light, the wavelength of that wave and the photoelectric work function. The mathematical representation of the same is given as follows.
\[\dfrac{hc}{\lambda }=\phi \]
Where h is the Planck's constant, c is the speed of light, \[\lambda \]is the wavelength and \[\phi \]is the work function.
The values of the constants are known, that is, the constants are: the Planck's constant and the speed of light.
The Planck's constant is, \[h=6.63\times {{10}^{-34}}\]
The speed of light is, \[c=3\times {{10}^{8}}{m}/{s}\;\]
Consider the formula
\[\dfrac{hc}{\lambda }=\phi \]
Substitute the values of the Planck's constant, the speed of light and the work function in the above equation.
\[\dfrac{(6.63\times {{10}^{-34}})(3\times {{10}^{8}})}{\lambda }=3.2\,eV\]
Now, multiply the charge on the electron with the work function to convert its unit from electron volt to Joules.
\[\dfrac{(6.63\times {{10}^{-34}})(3\times {{10}^{8}})}{\lambda }=3.2\,\times 1.6\times {{10}^{-19}}J\]
Continue further computation.
\[\lambda =\dfrac{(6.63\times {{10}^{-34}})(3\times {{10}^{8}})}{3.2\,\times 1.6\times {{10}^{-19}}}\]
Thus, the value of the threshold wavelength is,
\[\lambda =3.86\times {{10}^{-7}}m\]
\[\therefore \] The value of the threshold wavelength, for the photoelectric work function of metal being 3.2 eV is, \[3.86\times {{10}^{-7}}m\].
Note: The unit conversion from the electron volts to joules should be done, before starting the computation. The reason being, to obtain the wavelength in terms of meters. The value of Planck's constant and the speed of light should be known to solve this problem.
Formula used:
\[\dfrac{hc}{\lambda }=\phi \]
Complete step by step answer:
From the given information, we have the data as follows.
Photoelectric work function of metal is 3.2 eV.
The photoelectric effect formula gives the relation between the Planck’s constant, the speed of light, the wavelength of that wave and the photoelectric work function. The mathematical representation of the same is given as follows.
\[\dfrac{hc}{\lambda }=\phi \]
Where h is the Planck's constant, c is the speed of light, \[\lambda \]is the wavelength and \[\phi \]is the work function.
The values of the constants are known, that is, the constants are: the Planck's constant and the speed of light.
The Planck's constant is, \[h=6.63\times {{10}^{-34}}\]
The speed of light is, \[c=3\times {{10}^{8}}{m}/{s}\;\]
Consider the formula
\[\dfrac{hc}{\lambda }=\phi \]
Substitute the values of the Planck's constant, the speed of light and the work function in the above equation.
\[\dfrac{(6.63\times {{10}^{-34}})(3\times {{10}^{8}})}{\lambda }=3.2\,eV\]
Now, multiply the charge on the electron with the work function to convert its unit from electron volt to Joules.
\[\dfrac{(6.63\times {{10}^{-34}})(3\times {{10}^{8}})}{\lambda }=3.2\,\times 1.6\times {{10}^{-19}}J\]
Continue further computation.
\[\lambda =\dfrac{(6.63\times {{10}^{-34}})(3\times {{10}^{8}})}{3.2\,\times 1.6\times {{10}^{-19}}}\]
Thus, the value of the threshold wavelength is,
\[\lambda =3.86\times {{10}^{-7}}m\]
\[\therefore \] The value of the threshold wavelength, for the photoelectric work function of metal being 3.2 eV is, \[3.86\times {{10}^{-7}}m\].
Note: The unit conversion from the electron volts to joules should be done, before starting the computation. The reason being, to obtain the wavelength in terms of meters. The value of Planck's constant and the speed of light should be known to solve this problem.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE