Answer
Verified
391.5k+ views
Hint: In order to answer the question we will first find out the radians per Second by the formula ${\omega _r} = \dfrac{1}{{\sqrt {LC} }}$ , then we will find out the Q-Factor of the series by using the formula $Q = \dfrac{{{\omega _r}L}}{R}$ and finally we will find out the improved sharpness of the resonance of the circuit according to the given condition.
Complete answer:
The Q factor, which describes how quickly energy decays in an oscillating system, is used to define the sharpness of resonance. For a rise or decrease in damping, the sharpness of resonance increases or decreases, and as the amplitude increases, the sharpness of resonance decreases.
Inductance, \[L{\text{ }} = {\text{ }}3.0{\text{ }}H\]
Capacitance, \[C{\text{ }} = {\text{ }}27{\text{ }}\mu F{\text{ }} = {\text{ }}27{\text{ }} \times {\text{ }}{10^{ - 6}}C\]
Resistance, \[R{\text{ }} = {\text{ }}7.4{\text{ }}\Omega \] At resonance, angular frequency of the source for the given LCR series circuit is given as:
${\omega _r} = \dfrac{1}{{\sqrt {LC} }}$
$
{\omega _r} = \dfrac{1}{{\sqrt {3 \times 27 \times {{10}^{ - 6}}} }} \\
{\omega _r} = \dfrac{{{{10}^3}}}{9} \\
$
${\omega _r} = 111.11\,rad\,{s^{ - 1}}$
Q-Factor of the series:
$Q = \dfrac{{{\omega _r}L}}{R}$
$Q = \dfrac{{111.11 \times 3}}{{7.4}} = 45.0446$
We need to reduce \[R\]to half, i.e., Resistance, to increase the sharpness of the resonance by reducing its ‘full width at half limit' by a factor of \[2\] without modifying
$ = \dfrac{R}{2} = \dfrac{{7.4}}{2} = 3.7\Omega $
$\therefore $ For improvement in sharpness of resonance by a factor of $2$ ,Q should be doubled . To double Q with changing ${\omega _r}$, R should be reduced to half ,i.e., to $3.7\Omega $
Note: The quality factor is a ratio of resonant frequency to bandwidth, and the higher the circuit \[Q,\]the smaller the bandwidth, \[Q{\text{ }} = {\text{ }}{{\text{f}}_r}{\text{ }}/BW\]. During each phase of oscillation, it compares the maximum or peak energy stored in the circuit (the reactance) to the energy dissipated (the resistance)..
Complete answer:
The Q factor, which describes how quickly energy decays in an oscillating system, is used to define the sharpness of resonance. For a rise or decrease in damping, the sharpness of resonance increases or decreases, and as the amplitude increases, the sharpness of resonance decreases.
Inductance, \[L{\text{ }} = {\text{ }}3.0{\text{ }}H\]
Capacitance, \[C{\text{ }} = {\text{ }}27{\text{ }}\mu F{\text{ }} = {\text{ }}27{\text{ }} \times {\text{ }}{10^{ - 6}}C\]
Resistance, \[R{\text{ }} = {\text{ }}7.4{\text{ }}\Omega \] At resonance, angular frequency of the source for the given LCR series circuit is given as:
${\omega _r} = \dfrac{1}{{\sqrt {LC} }}$
$
{\omega _r} = \dfrac{1}{{\sqrt {3 \times 27 \times {{10}^{ - 6}}} }} \\
{\omega _r} = \dfrac{{{{10}^3}}}{9} \\
$
${\omega _r} = 111.11\,rad\,{s^{ - 1}}$
Q-Factor of the series:
$Q = \dfrac{{{\omega _r}L}}{R}$
$Q = \dfrac{{111.11 \times 3}}{{7.4}} = 45.0446$
We need to reduce \[R\]to half, i.e., Resistance, to increase the sharpness of the resonance by reducing its ‘full width at half limit' by a factor of \[2\] without modifying
$ = \dfrac{R}{2} = \dfrac{{7.4}}{2} = 3.7\Omega $
$\therefore $ For improvement in sharpness of resonance by a factor of $2$ ,Q should be doubled . To double Q with changing ${\omega _r}$, R should be reduced to half ,i.e., to $3.7\Omega $
Note: The quality factor is a ratio of resonant frequency to bandwidth, and the higher the circuit \[Q,\]the smaller the bandwidth, \[Q{\text{ }} = {\text{ }}{{\text{f}}_r}{\text{ }}/BW\]. During each phase of oscillation, it compares the maximum or peak energy stored in the circuit (the reactance) to the energy dissipated (the resistance)..
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE