
Obtain the Maclaurin’s series expansion for ${\log _e}\left( {1 + x} \right)$.
Answer
607.2k+ views
Hint: Find the 1st, 2nd, 3rd… order derivatives at x=0 and substitute in general form of Maclaurin’s series expansion.
Let us suppose the given function as \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\]
According to Maclaurin’s series expansion for any function,
\[f\left( x \right) = f\left( 0 \right) + \dfrac{x}{{1!}}f'\left( 0 \right) + \dfrac{{{x^2}}}{{2!}}f''\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}f'''\left( 0 \right) + ......{\text{ }} \to {\text{(1)}}\]
Now, let us find \[f'\left( x \right)\] by differentiating \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\] with respect to $x$, we get
\[{\text{ }}f'\left( x \right) = \dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {{{\log }_e}\left( {1 + x} \right)} \right)}}{{dx}} = \left( {\dfrac{1}{{1 + x}}} \right)\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = \dfrac{1}{{1 + x}}\]
For \[f''\left( x \right)\], differentiate \[f'\left( x \right)\] with respect to $x$, we get
\[f''\left( x \right) = \dfrac{{d\left( {f'\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {\dfrac{1}{{1 + x}}} \right)}}{{dx}} = \dfrac{{d\left[ {{{\left( {1 + x} \right)}^{ - 1}}} \right]}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Similarly, \[f'''\left( x \right) = \dfrac{{d\left( {f''\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( { - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}} \right)}}{{dx}} = - \dfrac{{d\left( {{{\left( {1 + x} \right)}^{ - 2}}} \right)}}{{dx}} = \dfrac{2}{{{{\left( {1 + x} \right)}^3}}}\]
Now, put \[x = 0\] in the expressions of \[f\left( x \right),{\text{ }}f'\left( x \right),{\text{ }}f''\left( x \right),f'''\left( x \right)\], etc.
Therefore, \[f\left( 0 \right) = {\log _e}\left( {1 + 0} \right) = {\log _e}\left( 1 \right) = 0\]
\[f'\left( 0 \right) = \dfrac{1}{{1 + 0}} = 1\], \[f''\left( 0 \right) = - \dfrac{1}{{{{\left( {1 + 0} \right)}^2}}} = - 1\], \[f'''\left( 0 \right) = \dfrac{2}{{{{\left( {1 + 0} \right)}^3}}} = 2\], etc.
Now substitute all the above values in equation (1), we get
\[
f\left( x \right) = 0 + \dfrac{x}{1} \times 1 + \dfrac{{{x^2}}}{2} \times \left( { - 1} \right) + \dfrac{{{x^3}}}{6} \times 2 + ....... \\
\Rightarrow f\left( x \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....... \\
\]
The above equation represents the Maclaurin’s series expansion for \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\].
Note: These types of problems are solved by finding the first derivative, second derivative, third derivative and so on of the given function and then finally substituting the value of the variable as 0. In this particular question, we have calculated only up to the third derivative just in order to avoid unnecessary computations. If we observe carefully the next term can be predicted easily.
Let us suppose the given function as \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\]
According to Maclaurin’s series expansion for any function,
\[f\left( x \right) = f\left( 0 \right) + \dfrac{x}{{1!}}f'\left( 0 \right) + \dfrac{{{x^2}}}{{2!}}f''\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}f'''\left( 0 \right) + ......{\text{ }} \to {\text{(1)}}\]
Now, let us find \[f'\left( x \right)\] by differentiating \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\] with respect to $x$, we get
\[{\text{ }}f'\left( x \right) = \dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {{{\log }_e}\left( {1 + x} \right)} \right)}}{{dx}} = \left( {\dfrac{1}{{1 + x}}} \right)\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = \dfrac{1}{{1 + x}}\]
For \[f''\left( x \right)\], differentiate \[f'\left( x \right)\] with respect to $x$, we get
\[f''\left( x \right) = \dfrac{{d\left( {f'\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {\dfrac{1}{{1 + x}}} \right)}}{{dx}} = \dfrac{{d\left[ {{{\left( {1 + x} \right)}^{ - 1}}} \right]}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Similarly, \[f'''\left( x \right) = \dfrac{{d\left( {f''\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( { - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}} \right)}}{{dx}} = - \dfrac{{d\left( {{{\left( {1 + x} \right)}^{ - 2}}} \right)}}{{dx}} = \dfrac{2}{{{{\left( {1 + x} \right)}^3}}}\]
Now, put \[x = 0\] in the expressions of \[f\left( x \right),{\text{ }}f'\left( x \right),{\text{ }}f''\left( x \right),f'''\left( x \right)\], etc.
Therefore, \[f\left( 0 \right) = {\log _e}\left( {1 + 0} \right) = {\log _e}\left( 1 \right) = 0\]
\[f'\left( 0 \right) = \dfrac{1}{{1 + 0}} = 1\], \[f''\left( 0 \right) = - \dfrac{1}{{{{\left( {1 + 0} \right)}^2}}} = - 1\], \[f'''\left( 0 \right) = \dfrac{2}{{{{\left( {1 + 0} \right)}^3}}} = 2\], etc.
Now substitute all the above values in equation (1), we get
\[
f\left( x \right) = 0 + \dfrac{x}{1} \times 1 + \dfrac{{{x^2}}}{2} \times \left( { - 1} \right) + \dfrac{{{x^3}}}{6} \times 2 + ....... \\
\Rightarrow f\left( x \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....... \\
\]
The above equation represents the Maclaurin’s series expansion for \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\].
Note: These types of problems are solved by finding the first derivative, second derivative, third derivative and so on of the given function and then finally substituting the value of the variable as 0. In this particular question, we have calculated only up to the third derivative just in order to avoid unnecessary computations. If we observe carefully the next term can be predicted easily.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

