Obtain the Maclaurin’s series expansion for ${\log _e}\left( {1 + x} \right)$.
Last updated date: 19th Mar 2023
•
Total views: 306.3k
•
Views today: 6.88k
Answer
306.3k+ views
Hint: Find the 1st, 2nd, 3rd… order derivatives at x=0 and substitute in general form of Maclaurin’s series expansion.
Let us suppose the given function as \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\]
According to Maclaurin’s series expansion for any function,
\[f\left( x \right) = f\left( 0 \right) + \dfrac{x}{{1!}}f'\left( 0 \right) + \dfrac{{{x^2}}}{{2!}}f''\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}f'''\left( 0 \right) + ......{\text{ }} \to {\text{(1)}}\]
Now, let us find \[f'\left( x \right)\] by differentiating \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\] with respect to $x$, we get
\[{\text{ }}f'\left( x \right) = \dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {{{\log }_e}\left( {1 + x} \right)} \right)}}{{dx}} = \left( {\dfrac{1}{{1 + x}}} \right)\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = \dfrac{1}{{1 + x}}\]
For \[f''\left( x \right)\], differentiate \[f'\left( x \right)\] with respect to $x$, we get
\[f''\left( x \right) = \dfrac{{d\left( {f'\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {\dfrac{1}{{1 + x}}} \right)}}{{dx}} = \dfrac{{d\left[ {{{\left( {1 + x} \right)}^{ - 1}}} \right]}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Similarly, \[f'''\left( x \right) = \dfrac{{d\left( {f''\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( { - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}} \right)}}{{dx}} = - \dfrac{{d\left( {{{\left( {1 + x} \right)}^{ - 2}}} \right)}}{{dx}} = \dfrac{2}{{{{\left( {1 + x} \right)}^3}}}\]
Now, put \[x = 0\] in the expressions of \[f\left( x \right),{\text{ }}f'\left( x \right),{\text{ }}f''\left( x \right),f'''\left( x \right)\], etc.
Therefore, \[f\left( 0 \right) = {\log _e}\left( {1 + 0} \right) = {\log _e}\left( 1 \right) = 0\]
\[f'\left( 0 \right) = \dfrac{1}{{1 + 0}} = 1\], \[f''\left( 0 \right) = - \dfrac{1}{{{{\left( {1 + 0} \right)}^2}}} = - 1\], \[f'''\left( 0 \right) = \dfrac{2}{{{{\left( {1 + 0} \right)}^3}}} = 2\], etc.
Now substitute all the above values in equation (1), we get
\[
f\left( x \right) = 0 + \dfrac{x}{1} \times 1 + \dfrac{{{x^2}}}{2} \times \left( { - 1} \right) + \dfrac{{{x^3}}}{6} \times 2 + ....... \\
\Rightarrow f\left( x \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....... \\
\]
The above equation represents the Maclaurin’s series expansion for \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\].
Note: These types of problems are solved by finding the first derivative, second derivative, third derivative and so on of the given function and then finally substituting the value of the variable as 0. In this particular question, we have calculated only up to the third derivative just in order to avoid unnecessary computations. If we observe carefully the next term can be predicted easily.
Let us suppose the given function as \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\]
According to Maclaurin’s series expansion for any function,
\[f\left( x \right) = f\left( 0 \right) + \dfrac{x}{{1!}}f'\left( 0 \right) + \dfrac{{{x^2}}}{{2!}}f''\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}f'''\left( 0 \right) + ......{\text{ }} \to {\text{(1)}}\]
Now, let us find \[f'\left( x \right)\] by differentiating \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\] with respect to $x$, we get
\[{\text{ }}f'\left( x \right) = \dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {{{\log }_e}\left( {1 + x} \right)} \right)}}{{dx}} = \left( {\dfrac{1}{{1 + x}}} \right)\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = \dfrac{1}{{1 + x}}\]
For \[f''\left( x \right)\], differentiate \[f'\left( x \right)\] with respect to $x$, we get
\[f''\left( x \right) = \dfrac{{d\left( {f'\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( {\dfrac{1}{{1 + x}}} \right)}}{{dx}} = \dfrac{{d\left[ {{{\left( {1 + x} \right)}^{ - 1}}} \right]}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\left( {\dfrac{{d\left( {1 + x} \right)}}{{dx}}} \right) = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Similarly, \[f'''\left( x \right) = \dfrac{{d\left( {f''\left( x \right)} \right)}}{{dx}} = \dfrac{{d\left( { - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}} \right)}}{{dx}} = - \dfrac{{d\left( {{{\left( {1 + x} \right)}^{ - 2}}} \right)}}{{dx}} = \dfrac{2}{{{{\left( {1 + x} \right)}^3}}}\]
Now, put \[x = 0\] in the expressions of \[f\left( x \right),{\text{ }}f'\left( x \right),{\text{ }}f''\left( x \right),f'''\left( x \right)\], etc.
Therefore, \[f\left( 0 \right) = {\log _e}\left( {1 + 0} \right) = {\log _e}\left( 1 \right) = 0\]
\[f'\left( 0 \right) = \dfrac{1}{{1 + 0}} = 1\], \[f''\left( 0 \right) = - \dfrac{1}{{{{\left( {1 + 0} \right)}^2}}} = - 1\], \[f'''\left( 0 \right) = \dfrac{2}{{{{\left( {1 + 0} \right)}^3}}} = 2\], etc.
Now substitute all the above values in equation (1), we get
\[
f\left( x \right) = 0 + \dfrac{x}{1} \times 1 + \dfrac{{{x^2}}}{2} \times \left( { - 1} \right) + \dfrac{{{x^3}}}{6} \times 2 + ....... \\
\Rightarrow f\left( x \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....... \\
\]
The above equation represents the Maclaurin’s series expansion for \[f\left( x \right) = {\log _e}\left( {1 + x} \right)\].
Note: These types of problems are solved by finding the first derivative, second derivative, third derivative and so on of the given function and then finally substituting the value of the variable as 0. In this particular question, we have calculated only up to the third derivative just in order to avoid unnecessary computations. If we observe carefully the next term can be predicted easily.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main
