Answer
Verified
492.3k+ views
Hint: Select the lowest and highest two digit terms divisible by $3$. To see whether the series is an A.P or not. Then if it is in A.P solve it by taking the ${{n}^{th}}$ term of the A.P. Find the value of $n$. You will get the answer.
We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.
This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.
That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.
Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.
We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.
So the lowest two digit number divisible by $3$ is $12$.
Highest two digit number divisible by $3$ is $99$.
So we can see the difference between the numbers that are divisible by 3, is $3$.
So the above series is in A.P.
We have to find it in terms of $n$.
And here$a=12,d=3,{{a}_{n}}=99$
Thus, the ${{n}^{th}}$term of A.P is :
${{a}_{n}}=a+(n-1)d$
Where,
$a=$First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$term
So now applying the formula for 99, we get,
$99=12+(n-1)3$
Simplifying further we get,
$\begin{align}
& 99-12=(n-1)3 \\
& 87=3n-3 \\
& 90=3n \\
& n=30 \\
\end{align}$
So we get $n=30$.
Therefore, the number of two digits divisible by $3$ are $30$.
Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.
We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.
This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.
That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.
Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.
We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.
So the lowest two digit number divisible by $3$ is $12$.
Highest two digit number divisible by $3$ is $99$.
So we can see the difference between the numbers that are divisible by 3, is $3$.
So the above series is in A.P.
We have to find it in terms of $n$.
And here$a=12,d=3,{{a}_{n}}=99$
Thus, the ${{n}^{th}}$term of A.P is :
${{a}_{n}}=a+(n-1)d$
Where,
$a=$First-term
$d=$ Common difference
$n=$ number of terms
${{a}_{n}}={{n}^{th}}$term
So now applying the formula for 99, we get,
$99=12+(n-1)3$
Simplifying further we get,
$\begin{align}
& 99-12=(n-1)3 \\
& 87=3n-3 \\
& 90=3n \\
& n=30 \\
\end{align}$
So we get $n=30$.
Therefore, the number of two digits divisible by $3$ are $30$.
Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths