# How many numbers of two digits are divisible by $3$ ?

Answer

Verified

362.4k+ views

Hint: Select the lowest and highest two digit terms divisible by $3$. To see whether the series is an A.P or not. Then if it is in A.P solve it by taking the ${{n}^{th}}$ term of the A.P. Find the value of $n$. You will get the answer.

We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.

This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.

That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.

Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.

We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.

So the lowest two digit number divisible by $3$ is $12$.

Highest two digit number divisible by $3$ is $99$.

So we can see the difference between the numbers that are divisible by 3, is $3$.

So the above series is in A.P.

We have to find it in terms of $n$.

And here$a=12,d=3,{{a}_{n}}=99$

Thus, the ${{n}^{th}}$term of A.P is :

${{a}_{n}}=a+(n-1)d$

Where,

$a=$First-term

$d=$ Common difference

$n=$ number of terms

${{a}_{n}}={{n}^{th}}$term

So now applying the formula for 99, we get,

$99=12+(n-1)3$

Simplifying further we get,

$\begin{align}

& 99-12=(n-1)3 \\

& 87=3n-3 \\

& 90=3n \\

& n=30 \\

\end{align}$

So we get $n=30$.

Therefore, the number of two digits divisible by $3$ are $30$.

Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.

We use ten digits in the way we count. Sometimes we use one digit to represent a number and sometimes we use more. In this lesson, you'll learn how many digits are in any given numeral, and recognize a digit when you see it. You will also begin learning about place value.

This is the numeral: $51$.These are the digits in that numeral: $5$ and $1$. The numeral has two digits because two symbols, or digits, make up the numeral $51$. What about this numeral ? $452$. This numeral has three digits: $4,5$ and $2$.

That $7$ is a special kind of symbol. It's called a digit. We have ten digits we use to make up all numerals. A numeral is a number written down. These digits are $0,1,2,3,4,5,6,7,8$ and $9$. That's it! You can make any numeral you want out of those ten digits.

Just like a red light means 'stop', a $7$ means 'seven'. It's a single symbol that represents a numeral. Yes, just like this is a symbol to stop.

We know, first two digit number divisible by $3$ is $12$ and the last two digit number divisible by $3$ is $99$. Thus, we get $12,15,......,99$.

So the lowest two digit number divisible by $3$ is $12$.

Highest two digit number divisible by $3$ is $99$.

So we can see the difference between the numbers that are divisible by 3, is $3$.

So the above series is in A.P.

We have to find it in terms of $n$.

And here$a=12,d=3,{{a}_{n}}=99$

Thus, the ${{n}^{th}}$term of A.P is :

${{a}_{n}}=a+(n-1)d$

Where,

$a=$First-term

$d=$ Common difference

$n=$ number of terms

${{a}_{n}}={{n}^{th}}$term

So now applying the formula for 99, we get,

$99=12+(n-1)3$

Simplifying further we get,

$\begin{align}

& 99-12=(n-1)3 \\

& 87=3n-3 \\

& 90=3n \\

& n=30 \\

\end{align}$

So we get $n=30$.

Therefore, the number of two digits divisible by $3$ are $30$.

Note: Read the question properly. Also, we should know the lowest and highest two digit terms divisible by $3$. So the concepts related to A.P should be clear. Here we have used the concept of A.P that is we have used ${{n}^{th}}$ term of A.P which is ${{a}_{n}}=a+(n-1)d$.

Last updated date: 26th Sep 2023

â€¢

Total views: 362.4k

â€¢

Views today: 10.62k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG