Answer
Verified
455.1k+ views
Hint: Determine the n factor by calculating the decrease in the oxidation number of manganese. Then use the formula \[{\text{Normality = Molarity }} \times {\text{ n factor}}\] to convert molarity into normality.
Complete step by step answer:
The decrease in the oxidation number is the reduction. In a redox reaction, an oxidizing agent oxidizes other substances. A species, whose oxidation number decreases during the reaction, is known as an oxidizing agent. An oxidizing agent itself undergoes reduction. For an oxidizing agent, the n factor gives the decrease in the oxidation number.
For manganese, determine the n factor from the decrease in the oxidation number.
The oxidation number of manganese in \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is +7.
The oxidation number of manganese in \[{\text{M}}{{\text{n}}^{2 + }}\] is +2.
When \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is reduced to \[{\text{M}}{{\text{n}}^{2 + }}\] ions, the oxidation number of manganese decreases from +7 to +5. The decrease in the oxidation number of manganese is 5. Hence, the n factor is 5.
The molarity of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.025 M}}\].
Use the formula \[{\text{Normality = Molarity }} \times {\text{ n factor}}\] to convert molarity into normality.
\[{\text{Normality = Molarity }} \times {\text{ n factor}} \\
{\text{Normality = 0}}{\text{.025 M }} \times {\text{ 5}} \\
{\text{Normality = 0}}{\text{.125 N}} \\\]
Hence, the normality of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.125 N}}\].
Hence, the option A )\[{\text{0}}{\text{.125 N}}\] is the correct option.
Additional information: n factor can also be defined as the ratio of the normality to the molarity.
Note: For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the number of electrons gained. For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the decrease in the oxidation number.
The number of gram equivalents is the ratio of the mass of oxidising agents to its equivalent weight. Normality is the number of gram equivalents present in one litre of solution.
Complete step by step answer:
The decrease in the oxidation number is the reduction. In a redox reaction, an oxidizing agent oxidizes other substances. A species, whose oxidation number decreases during the reaction, is known as an oxidizing agent. An oxidizing agent itself undergoes reduction. For an oxidizing agent, the n factor gives the decrease in the oxidation number.
For manganese, determine the n factor from the decrease in the oxidation number.
The oxidation number of manganese in \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is +7.
The oxidation number of manganese in \[{\text{M}}{{\text{n}}^{2 + }}\] is +2.
When \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] is reduced to \[{\text{M}}{{\text{n}}^{2 + }}\] ions, the oxidation number of manganese decreases from +7 to +5. The decrease in the oxidation number of manganese is 5. Hence, the n factor is 5.
The molarity of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.025 M}}\].
Use the formula \[{\text{Normality = Molarity }} \times {\text{ n factor}}\] to convert molarity into normality.
\[{\text{Normality = Molarity }} \times {\text{ n factor}} \\
{\text{Normality = 0}}{\text{.025 M }} \times {\text{ 5}} \\
{\text{Normality = 0}}{\text{.125 N}} \\\]
Hence, the normality of \[{\text{KMn}}{{\text{O}}_{\text{4}}}\] solution is \[{\text{0}}{\text{.125 N}}\].
Hence, the option A )\[{\text{0}}{\text{.125 N}}\] is the correct option.
Additional information: n factor can also be defined as the ratio of the normality to the molarity.
Note: For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the number of electrons gained. For an oxidizing agent, the equivalent weight is the ratio of the molecular weight to the decrease in the oxidation number.
The number of gram equivalents is the ratio of the mass of oxidising agents to its equivalent weight. Normality is the number of gram equivalents present in one litre of solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE