
How many natural numbers are there from $1$ to $1000$ which have none of their digits repeated?
Answer
614.4k+ views
Hint: We have 3 kinds of digits from $1$ and $1000$ such as one digit numbers, two digit numbers and three digit numbers.
Complete step by step answer:
Complete step by step answer:
Now here we have to find natural numbers where none of the digits should be repeated.
Here from $1$ to $1000$ we have $3$ kinds of digits
One digit numbers, two digit numbers and three digit numbers.
One digit numbers:
We know that there are $9$ possible to get single digit numbers from $1 - 9$
$ \Rightarrow 9 ways$
Two digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from$0 - 9$.
We also know that “zero” cannot be the first digit so we have excluded it
Total possible = $9 \times 9 = 81$ ways
Three digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from $0 - 9$ but not the first digit $10 - 1 = 9$.
And the third digit can be from $0 - 9$ but not the same as the first and second digit.
Total possible=$9 \times 9 \times 8 = 648$
Here we have found all the possible under without repetition condition
Therefore total number of natural numbers from $1$ to $1000$ without repetition= $648 + 81 + 9 = 738$ ways.
Note: Make a note that digits should not be repeated and kindly focus that zero can’t be the first digit for any kind terms.
Here from $1$ to $1000$ we have $3$ kinds of digits
One digit numbers, two digit numbers and three digit numbers.
One digit numbers:
We know that there are $9$ possible to get single digit numbers from $1 - 9$
$ \Rightarrow 9 ways$
Two digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from$0 - 9$.
We also know that “zero” cannot be the first digit so we have excluded it
Total possible = $9 \times 9 = 81$ ways
Three digit numbers:
Here the first digit can be from $1 - 9$ and the second digit can be from $0 - 9$ but not the first digit $10 - 1 = 9$.
And the third digit can be from $0 - 9$ but not the same as the first and second digit.
Total possible=$9 \times 9 \times 8 = 648$
Here we have found all the possible under without repetition condition
Therefore total number of natural numbers from $1$ to $1000$ without repetition= $648 + 81 + 9 = 738$ ways.
Note: Make a note that digits should not be repeated and kindly focus that zero can’t be the first digit for any kind terms.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Sketch the electric field lines in case of an electric class 12 physics CBSE

Explain the formation of energy bands in solids On class 12 physics CBSE

Mention any two factors on which the capacitance of class 12 physics CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

a Draw Labelled diagram of Standard Hydrogen Electrode class 12 chemistry CBSE

