
Metallic spheres of radii 6 cm, 8 cm and 10 cm, respectively, are melted to form a single solid sphere. Find the radius of the resulting sphere.
Answer
613.8k+ views
Hint: Volume of the 3 spheres when melted to form a single sphere will be equal. Equate the sum of volume of the 3 spheres with the volume of the new sphere to find the radius of the new sphere.
Three metallic spheres of radii 6 cm, 8 cm and 10 cm are to be melted and formed into a single sphere. Let the radius of the new sphere be ‘r’.
Let the radius of the three metallic spheres be \[r1,{\text{ }}r2\] and \[r3\].
So we have, $r1 = 6,r2 = 8,r3 = 10$
When the three spheres are melted and formed into a single sphere, their volumes will remain the same. So, we can write it as,
(Volume of sphere 1 + Volume of sphere 2 + Volume of sphere 3)=Volume of the new sphere ..(1)
Volume of sphere 1= $\dfrac{4}{3}\pi r{1^3}$
$
= \dfrac{4}{3} \times \pi \times {(6)^3} \\
= \dfrac{{864}}{3}\pi c{m^3} \\
$
Volume of sphere 2= $\dfrac{4}{3}\pi r{2^3}$
$
= \dfrac{4}{3} \times \pi \times {(8)^3} \\
= \dfrac{{2048}}{3}\pi c{m^3} \\
$
Volume of sphere 3= $\dfrac{4}{3}\pi r{3^3}$
$
= \dfrac{4}{3} \times \pi \times {(10)^3} \\
= \dfrac{{4000}}{3}\pi c{m^3} \\
$
So as per equation (1), we need to add all the three volumes and equate it to the volume of the new sphere with radius ‘r’
Volume of new sphere= \[\dfrac{{864}}{3}\pi + \dfrac{{2048}}{3}\pi + \dfrac{{4000}}{3}\pi \]
$
= \dfrac{\pi }{3}\left( {864 + 2048 + 4000} \right) \\
= \dfrac{{6912}}{3}\pi \\
= 2304\pi c{m^3} \\
$
Volume of new sphere= $\dfrac{4}{3}\pi {r^3}$
So, by equating both we get,
$
\dfrac{4}{3}\pi {r^3} = 2304\pi \\
{r^3} = \dfrac{{6912}}{4} \\
{r^3} = 1728 \\
$
Expressing in terms of exponents where the exponent needs to be 3, we get
${r^3} = {12^3}$
When exponents are the same, the bases are equal.
$r = 12$ cm
Hence the radius of the new sphere formed is 12 cm.
Note: In these types of problems, it is better to keep $\pi $ till the end because it will be easier to calculate and in the end it might get cancelled. This also avoids the possibility of calculation errors.
Three metallic spheres of radii 6 cm, 8 cm and 10 cm are to be melted and formed into a single sphere. Let the radius of the new sphere be ‘r’.
Let the radius of the three metallic spheres be \[r1,{\text{ }}r2\] and \[r3\].
So we have, $r1 = 6,r2 = 8,r3 = 10$
When the three spheres are melted and formed into a single sphere, their volumes will remain the same. So, we can write it as,
(Volume of sphere 1 + Volume of sphere 2 + Volume of sphere 3)=Volume of the new sphere ..(1)
Volume of sphere 1= $\dfrac{4}{3}\pi r{1^3}$
$
= \dfrac{4}{3} \times \pi \times {(6)^3} \\
= \dfrac{{864}}{3}\pi c{m^3} \\
$
Volume of sphere 2= $\dfrac{4}{3}\pi r{2^3}$
$
= \dfrac{4}{3} \times \pi \times {(8)^3} \\
= \dfrac{{2048}}{3}\pi c{m^3} \\
$
Volume of sphere 3= $\dfrac{4}{3}\pi r{3^3}$
$
= \dfrac{4}{3} \times \pi \times {(10)^3} \\
= \dfrac{{4000}}{3}\pi c{m^3} \\
$
So as per equation (1), we need to add all the three volumes and equate it to the volume of the new sphere with radius ‘r’
Volume of new sphere= \[\dfrac{{864}}{3}\pi + \dfrac{{2048}}{3}\pi + \dfrac{{4000}}{3}\pi \]
$
= \dfrac{\pi }{3}\left( {864 + 2048 + 4000} \right) \\
= \dfrac{{6912}}{3}\pi \\
= 2304\pi c{m^3} \\
$
Volume of new sphere= $\dfrac{4}{3}\pi {r^3}$
So, by equating both we get,
$
\dfrac{4}{3}\pi {r^3} = 2304\pi \\
{r^3} = \dfrac{{6912}}{4} \\
{r^3} = 1728 \\
$
Expressing in terms of exponents where the exponent needs to be 3, we get
${r^3} = {12^3}$
When exponents are the same, the bases are equal.
$r = 12$ cm
Hence the radius of the new sphere formed is 12 cm.
Note: In these types of problems, it is better to keep $\pi $ till the end because it will be easier to calculate and in the end it might get cancelled. This also avoids the possibility of calculation errors.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

