Answer
Verified
492.3k+ views
Hint: Use trigonometric R-method to find the maxima of a given expression. Find the formula of the R-method and compare it with the expression given. Then solve it to get the maximum value.
“Complete step-by-step answer:”
We have been given the expression, \[2\sin x+4\cos x+3\].
So, let us put, \[f\left( x \right)=2\sin x+4\cos x+3\].
The maximum value of \[a\sin x+b\cos x\]is equal to \[\sqrt{{{a}^{2}}+{{b}^{2}}}\].
This equation \[\left( a\sin x+b\cos x \right)\] is similar to the expression, \[2\sin x+4\cos x+3\].
Let us use the Trigonometric R-method to solve this expression.
The R-method is used to find the extrema (maxima and minimum) of combinations of trigonometric function.
Let us consider, \[y=A\sin x+b\sin x\].
Thus by using the R-formula, let us express y as, \[y=a\sin x+b\cos x=R\sin \left( x+\theta \right)\].
For maximum value of y, \[\sin \left( x+\theta \right)=1\].
\[\therefore \]Maximum value of, \[y=R\left( 1 \right)=R\].
We know, \[\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b\].
We need to find the values of R.
\[a\sin x+b\cos x=\left( R\cos \theta \right)\sin x+\left( R\sin \theta \right)\cos x\]
By comparing we can see that, \[a=R\cos \theta \] and \[b=R\sin \theta \].
\[\begin{align}
& \therefore \dfrac{b}{a}=\dfrac{R\sin \theta }{R\cos \theta }=\tan \theta \\
& \therefore \tan \theta =\dfrac{b}{a} \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) \\
\end{align}\]
\[a=R\cos \theta \]
\[\begin{align}
& R=\dfrac{a}{\cos \theta }=\dfrac{a}{\cos {{\tan }^{-1}}\left( \dfrac{b}{a} \right)}=\dfrac{a}{\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}} \\
& R=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& \therefore a\sin x+b\cos x=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
\end{align}\]
So, value of a = 2 and b = 4.
\[\begin{align}
& f\left( x \right)=2\sin x+4\cos x+3 \\
& f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}+3 \\
& f\left( x \right)=\sqrt{{{2}^{2}}+{{4}^{2}}}+3 \\
& \therefore f\left( x \right)=\sqrt{20}+3=\sqrt{2\times 2\times 5}+3 \\
& f\left( x \right)=2\sqrt{5}+3 \\
\end{align}\]
Therefore, the maximum value of f (x) becomes, \[\sqrt{20}+3=2\sqrt{5}+3\].
Hence, option (a) is the correct answer.
Note: Maxima and Minima are important concepts in trigonometry. Here we did the proof for finding maximum value. You can simply apply the expression in the given function f (x) as they are similar.
If \[f\left( x \right)=2\sin x+4\cos x\], then \[f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{20}\].
The maximum value of f (x) is \[\sqrt{20}\].
“Complete step-by-step answer:”
We have been given the expression, \[2\sin x+4\cos x+3\].
So, let us put, \[f\left( x \right)=2\sin x+4\cos x+3\].
The maximum value of \[a\sin x+b\cos x\]is equal to \[\sqrt{{{a}^{2}}+{{b}^{2}}}\].
This equation \[\left( a\sin x+b\cos x \right)\] is similar to the expression, \[2\sin x+4\cos x+3\].
Let us use the Trigonometric R-method to solve this expression.
The R-method is used to find the extrema (maxima and minimum) of combinations of trigonometric function.
Let us consider, \[y=A\sin x+b\sin x\].
Thus by using the R-formula, let us express y as, \[y=a\sin x+b\cos x=R\sin \left( x+\theta \right)\].
For maximum value of y, \[\sin \left( x+\theta \right)=1\].
\[\therefore \]Maximum value of, \[y=R\left( 1 \right)=R\].
We know, \[\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b\].
We need to find the values of R.
\[a\sin x+b\cos x=\left( R\cos \theta \right)\sin x+\left( R\sin \theta \right)\cos x\]
By comparing we can see that, \[a=R\cos \theta \] and \[b=R\sin \theta \].
\[\begin{align}
& \therefore \dfrac{b}{a}=\dfrac{R\sin \theta }{R\cos \theta }=\tan \theta \\
& \therefore \tan \theta =\dfrac{b}{a} \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) \\
\end{align}\]
\[a=R\cos \theta \]
\[\begin{align}
& R=\dfrac{a}{\cos \theta }=\dfrac{a}{\cos {{\tan }^{-1}}\left( \dfrac{b}{a} \right)}=\dfrac{a}{\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}} \\
& R=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
& \therefore a\sin x+b\cos x=\sqrt{{{a}^{2}}+{{b}^{2}}} \\
\end{align}\]
So, value of a = 2 and b = 4.
\[\begin{align}
& f\left( x \right)=2\sin x+4\cos x+3 \\
& f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}+3 \\
& f\left( x \right)=\sqrt{{{2}^{2}}+{{4}^{2}}}+3 \\
& \therefore f\left( x \right)=\sqrt{20}+3=\sqrt{2\times 2\times 5}+3 \\
& f\left( x \right)=2\sqrt{5}+3 \\
\end{align}\]
Therefore, the maximum value of f (x) becomes, \[\sqrt{20}+3=2\sqrt{5}+3\].
Hence, option (a) is the correct answer.
Note: Maxima and Minima are important concepts in trigonometry. Here we did the proof for finding maximum value. You can simply apply the expression in the given function f (x) as they are similar.
If \[f\left( x \right)=2\sin x+4\cos x\], then \[f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{20}\].
The maximum value of f (x) is \[\sqrt{20}\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE