Maximum value of the expression \[2\sin x+4\cos x+3\] is A. \[2\sqrt{5}+3\] B. \[2\sqrt{5}-3\] C. \[\sqrt{5}+3\] D. None of these.
Answer
Verified
Hint: Use trigonometric R-method to find the maxima of a given expression. Find the formula of the R-method and compare it with the expression given. Then solve it to get the maximum value.
“Complete step-by-step answer:” We have been given the expression, \[2\sin x+4\cos x+3\]. So, let us put, \[f\left( x \right)=2\sin x+4\cos x+3\]. The maximum value of \[a\sin x+b\cos x\]is equal to \[\sqrt{{{a}^{2}}+{{b}^{2}}}\]. This equation \[\left( a\sin x+b\cos x \right)\] is similar to the expression, \[2\sin x+4\cos x+3\]. Let us use the Trigonometric R-method to solve this expression. The R-method is used to find the extrema (maxima and minimum) of combinations of trigonometric function. Let us consider, \[y=A\sin x+b\sin x\]. Thus by using the R-formula, let us express y as, \[y=a\sin x+b\cos x=R\sin \left( x+\theta \right)\]. For maximum value of y, \[\sin \left( x+\theta \right)=1\]. \[\therefore \]Maximum value of, \[y=R\left( 1 \right)=R\]. We know, \[\sin \left( a+b \right)=\sin a\cos b+\cos a\sin b\]. We need to find the values of R. \[a\sin x+b\cos x=\left( R\cos \theta \right)\sin x+\left( R\sin \theta \right)\cos x\] By comparing we can see that, \[a=R\cos \theta \] and \[b=R\sin \theta \]. \[\begin{align} & \therefore \dfrac{b}{a}=\dfrac{R\sin \theta }{R\cos \theta }=\tan \theta \\ & \therefore \tan \theta =\dfrac{b}{a} \\ & \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) \\ \end{align}\] \[a=R\cos \theta \] \[\begin{align} & R=\dfrac{a}{\cos \theta }=\dfrac{a}{\cos {{\tan }^{-1}}\left( \dfrac{b}{a} \right)}=\dfrac{a}{\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}} \\ & R=\sqrt{{{a}^{2}}+{{b}^{2}}} \\ & \therefore a\sin x+b\cos x=\sqrt{{{a}^{2}}+{{b}^{2}}} \\ \end{align}\] So, value of a = 2 and b = 4. \[\begin{align} & f\left( x \right)=2\sin x+4\cos x+3 \\ & f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}+3 \\ & f\left( x \right)=\sqrt{{{2}^{2}}+{{4}^{2}}}+3 \\ & \therefore f\left( x \right)=\sqrt{20}+3=\sqrt{2\times 2\times 5}+3 \\ & f\left( x \right)=2\sqrt{5}+3 \\ \end{align}\] Therefore, the maximum value of f (x) becomes, \[\sqrt{20}+3=2\sqrt{5}+3\]. Hence, option (a) is the correct answer.
Note: Maxima and Minima are important concepts in trigonometry. Here we did the proof for finding maximum value. You can simply apply the expression in the given function f (x) as they are similar. If \[f\left( x \right)=2\sin x+4\cos x\], then \[f\left( x \right)=\sqrt{{{a}^{2}}+{{b}^{2}}}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{20}\]. The maximum value of f (x) is \[\sqrt{20}\].
×
Sorry!, This page is not available for now to bookmark.